cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 221 results. Next

A209874 Least m > 0 such that the prime p=A002313(n+1) divides m^2+1.

Original entry on oeis.org

1, 2, 8, 4, 12, 6, 32, 30, 50, 46, 34, 22, 10, 76, 98, 100, 44, 28, 80, 162, 112, 14, 122, 144, 64, 16, 82, 60, 228, 138, 288, 114, 148, 136, 42, 104, 274, 334, 20, 266, 392, 254, 382, 348, 48, 208, 286, 52, 118, 86, 24, 516, 476, 578, 194, 154, 504, 106, 58, 26, 566, 96, 380, 670, 722, 62, 456, 582, 318, 526, 246, 520, 650, 726, 494, 324
Offset: 0

Views

Author

M. F. Hasler, Mar 11 2012

Keywords

Comments

This yields the prime factors of numbers of the form N^2+1, cf. formula in A089120: For n=0,1,2,... check whether N = +/- a(n) [mod 2*A002313(n+1)], if so, then A002313(n+1) is a prime factor of N^2+1.
Obviously, p then divides (2kp +/- a(n))^2+1 for all k >=0 ; in particular it will be the least prime factor of such numbers if there is no earlier match.
Alternatively one could deal separately with the case of odd N, for which p=2 divides N^2+1, and even N, for which only Pythagorean primes A002144(n)=A002313(n+1) can be prime factors of N^2+1.

Crossrefs

Programs

  • PARI
    A209874(n)=if( n, 2*lift(sqrt(Mod(-1, A002144[n])/4)), 1)
    
  • PARI
    /* for illustrative purpose: a(n) is the smaller of the 2 possible remainders mod 2*p of numbers N such that N^2+1 has p as smallest prime factor */ forprime( p=1,199, p>2 & p%4 != 1 & next; my(c=[]); for(i=1,9e9, factor(i^2+1)[1,1]==p |next; c=vecsort(concat(c,i%(2*p)),,8); #c==1 || print1(","c[1]) || break))

Formula

For n>0, A209874(n) = 2*sqrt(-1/4 mod A002144(n)), where sqrt(a mod p) stands for the positive x < p/2 such that x^2=a in Z/pZ.
A209874(n) = A209877(n)*2 for n>0.

A237040 Semiprimes of the form k^3 + 1.

Original entry on oeis.org

9, 65, 217, 4097, 5833, 10649, 21953, 74089, 195113, 216001, 343001, 373249, 474553, 1000001, 1061209, 1191017, 1404929, 3241793, 3796417, 4251529, 6859001, 9261001, 12487169, 21952001, 29791001, 35937001, 43614209, 45882713, 55742969, 62099137, 89915393, 94818817, 117649001
Offset: 1

Views

Author

Jonathan Sondow, Feb 02 2014

Keywords

Comments

k^3 + 1 is a term iff k + 1 and k^2 - k + 1 are both prime.
Is the sequence infinite? This is an analog of Landau's 4th problem, namely, are there infinitely many primes of the form k^2 + 1?
In other words: are there infinitely many primes p such that p^2 - 3*p + 3 is also prime? - Charles R Greathouse IV, Jul 02 2017

Examples

			9 = 3*3 = 2^3 + 1 is the first semiprime of the form n^3 + 1, so a(1) = 9.
		

Crossrefs

Cf. A242262 (semiprimes of the form k^3 - 1).

Programs

  • Magma
    IsSemiprime:= func; [s: n in [1..500] | IsSemiprime(s) where s is n^3 + 1]; // Vincenzo Librandi, Jul 02 2017
  • Mathematica
    L = Select[Range[500], PrimeQ[# + 1] && PrimeQ[#^2 - # + 1] &]; L^3 + 1
    Select[Range[50]^3 + 1, PrimeOmega[#] == 2 &] (* Zak Seidov, Jun 26 2017 *)
  • PARI
    lista(nn) = for (n=1, nn, if (bigomega(sp=n^3+1) == 2, print1(sp, ", "));); \\ Michel Marcus, Jun 27 2017
    
  • PARI
    list(lim)=my(v=List(),n,t); forprime(p=3,sqrtnint(lim\1-1,3)+1, if(isprime(t=p^2-3*p+3), listput(v,t*p))); Vec(v) \\ Charles R Greathouse IV, Jul 02 2017
    

Formula

a(n) = A096173(n)^3 + 1 = 8*A237037(n)^3 + 1.

A256775 Primes of the form n^2 + 81.

Original entry on oeis.org

97, 181, 277, 337, 757, 1237, 2017, 3217, 4177, 5557, 5857, 6481, 7477, 11317, 13537, 16981, 19681, 21397, 33937, 37717, 48481, 51157, 52981, 59617, 62581, 65617, 80737, 84181, 87697, 96181, 102481, 106357, 111637, 119797, 144481, 149077, 155317, 160081
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

subsequence of A045349.
Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256840 (b=12), A256841 (b=13).

Programs

  • Haskell
    a256775 n = a256775_list !! (n-1)
    a256775_list = [x | x <- map (+ 81) a000290_list, a010051' x == 1]
    
  • Magma
    [p: p in PrimesUpTo(200000)| IsSquare(p-81)]; // Vincenzo Librandi, Apr 20 2015
    
  • Mathematica
    Select[Range[400]^2 + 81, PrimeQ] (* Michael De Vlieger, Apr 19 2015 *)
  • PARI
    for(n=1,10^3,if(isprime(p=n^2+81),print1(p,", "))) \\ Derek Orr, Apr 24 2015

A256776 Primes of form n^2 + 256.

Original entry on oeis.org

257, 281, 337, 617, 881, 1097, 1217, 1481, 1777, 2281, 2657, 2857, 4481, 5297, 5881, 7481, 8537, 9281, 10457, 12577, 14897, 15881, 17417, 18481, 19577, 23057, 24281, 25537, 26177, 27481, 28817, 30881, 32297, 35977, 38281, 39857, 42281, 44777, 52697, 53617
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256840 (b=12), A256841 (b=13).

Programs

  • Haskell
    a256776 n = a256776_list !! (n-1)
    a256776_list = [x | x <- map (+ 256) a000290_list, a010051' x == 1]
    
  • PARI
    list(lim)=if(lim<257,return([])); my(v=List(),t); forstep(n=1, sqrtint(lim\1-256), 2, if(isprime(t=n^2+256), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Aug 18 2017

A256777 Primes of form n^2 + 625.

Original entry on oeis.org

641, 661, 769, 821, 881, 1109, 1201, 1301, 1409, 2069, 2389, 2741, 3329, 3541, 3761, 3989, 4721, 6101, 6709, 7349, 7681, 8369, 9461, 12289, 14081, 14549, 16001, 18049, 19121, 20789, 25589, 28181, 31601, 32309, 33749, 35221, 35969, 37489, 38261, 39041, 39829
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256840 (b=12), A256841 (b=13).

Programs

  • Haskell
    a256777 n = a256777_list !! (n-1)
    a256777_list = [x | x <- map (+ 625) a000290_list, a010051' x == 1]
    
  • Mathematica
    Select[Range[200]^2+625,PrimeQ] (* Harvey P. Dale, Aug 27 2025 *)
  • PARI
    list(lim)=if(lim<641,return([])); my(v=List(),t); forstep(n=4, sqrtint(lim\1-625), 2, if(isprime(t=n^2+625), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Aug 18 2017

A256834 Primes of form n^2 + 1296.

Original entry on oeis.org

1297, 1321, 1657, 2137, 2521, 3697, 5521, 6337, 7537, 8521, 10321, 11497, 13177, 15937, 16921, 18457, 23497, 24097, 25321, 34057, 35521, 40897, 43321, 45817, 47521, 58417, 59377, 88321, 90697, 94321, 98017, 106921, 109537, 117577, 127321, 131617, 138937
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256840 (b=12), A256841 (b=13).

Programs

  • Haskell
    a256834 n = a256834_list !! (n-1)
    a256834_list = [x | x <- map (+ 1296) a000290_list, a010051' x == 1]
  • Mathematica
    Select[Range[1,401,2]^2+1296,PrimeQ] (* Harvey P. Dale, Sep 18 2018 *)

A256835 Primes of form n^2 + 2401.

Original entry on oeis.org

2417, 2437, 2657, 2801, 3301, 3557, 3697, 4001, 4337, 4517, 7877, 10501, 11617, 12401, 13217, 19301, 20357, 20897, 26737, 28001, 29297, 33377, 36997, 38501, 40037, 44017, 48197, 49057, 64901, 70001, 77477, 78577, 86501, 90017, 92401, 104801, 107377, 108677
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256840 (b=12), A256841 (b=13).

Programs

  • Haskell
    a256835 n = a256835_list !! (n-1)
    a256835_list = [x | x <- map (+ 2401) a000290_list, a010051' x == 1]

A256836 Primes of form n^2 + 4096.

Original entry on oeis.org

4177, 4217, 4457, 4721, 4937, 6121, 7121, 7577, 7817, 9137, 9721, 10337, 10657, 11321, 12377, 13121, 15121, 16417, 17321, 18257, 23417, 23977, 25121, 26297, 31321, 34721, 36137, 36857, 38321, 40577, 44497, 47777, 50321, 52057, 52937, 54721, 57457, 81937
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256840 (b=12), A256841 (b=13).

Programs

  • Haskell
    a256836 n = a256836_list !! (n-1)
    a256836_list = [x | x <- map (+ 4096) a000290_list, a010051' x == 1]
  • Mathematica
    Select[Range[1,300,2]^2+4096,PrimeQ] (* Harvey P. Dale, May 26 2025 *)

A256837 Primes of form n^2 + 6561.

Original entry on oeis.org

6577, 6661, 6961, 7237, 7717, 8161, 8677, 9697, 10657, 12037, 16561, 17377, 18661, 21937, 24517, 25057, 26161, 33457, 35461, 37537, 56737, 57637, 69061, 74161, 77317, 81637, 84961, 106417, 108961, 124897, 129061, 143461, 146437, 147937, 150961, 155557
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256838 (b=10), A256839 (b=11), A256840 (b=12), A256841 (b=13)

Programs

  • Haskell
    a256837 n = a256837_list !! (n-1)
    a256837_list = [x | x <- map (+ 6561) a000290_list, a010051' x == 1]

A256838 Primes of form n^2 + 10000.

Original entry on oeis.org

10009, 10169, 10289, 10529, 10729, 11369, 11681, 12401, 12601, 12809, 13249, 13721, 14489, 15329, 16561, 16889, 17569, 17921, 19801, 20201, 21881, 22769, 23689, 26641, 27689, 29881, 30449, 32801, 33409, 34649, 35281, 37889, 38561, 39241, 39929, 48809, 53681
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256839 (b=11), A256840 (b=12), A256841 (b=13).

Programs

  • Haskell
    a256838 n = a256838_list !! (n-1)
    a256838_list = [x | x <- map (+ 10000) a000290_list, a010051' x == 1]
Previous Showing 31-40 of 221 results. Next