cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 42 results. Next

A214873 Primes p such that 2*p + 1 is also prime and p + 1 is a highly composite number (definition 1).

Original entry on oeis.org

3, 5, 11, 23, 179, 239, 359, 719, 5039, 55439, 665279, 6486479, 32432399, 698377679, 735134399, 1102701599, 20951330399, 3212537327999, 149602080797769599, 299204161595539199, 2718551763981393634806325317503999
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jul 30 2012

Keywords

Comments

An equivalent definition of this sequence: odd Sophie Germain primes that differ from a highly composite number by 1.
Intersection of A005384 (Sophie Germain primes) and A072828.
With the exception of 5, a subsequence of A002515 (Lucasian primes).
Except for first two terms, this is a subsequence of A054723.
Except for n = 2, 2*a(n) + 1 is a prime factor of A000225(a(n)) (i.e., 2*23 + 1 divides 2^23 - 1).
Conjecture: for n >= 5, GCD(A000032(a(n)), A000225(a(n))) = 2*a(n) + 1.

Examples

			23 is a term because both 23 and 47 are primes and also 24 is a highly composite number.
		

Crossrefs

Cf. A054723.

Programs

  • Mathematica
    lst = {}; a = 0; Do[b = DivisorSigma[0, n + 1]; If[b > a, a = b; If[PrimeQ[n] && PrimeQ[2*n + 1], AppendTo[lst, n]]], {n, 1, 10^6, 2}]; lst

A215850 Primes p such that 2*p + 1 divides Lucas(p).

Original entry on oeis.org

5, 29, 89, 179, 239, 359, 419, 509, 659, 719, 809, 1019, 1049, 1229, 1289, 1409, 1439, 1499, 1559, 1889, 2039, 2069, 2129, 2339, 2399, 2459, 2549, 2699, 2819, 2939, 2969, 3299, 3329, 3359, 3389, 3449, 3539, 3779, 4019, 4349, 4409, 4919, 5039, 5279, 5399, 5639
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 24 2012

Keywords

Comments

An equivalent definition of this sequence: 5 together with primes p such that p == -1 (mod 30) and 2*p + 1 is also prime.
Sequence without the initial 5 is the intersection of A005384 and A132236.
These numbers do not occur in A137715.
From Arkadiusz Wesolowski, Aug 25 2012: (Start)
The sequence contains numbers like 1409 which are in A053027.
a(n) is in A002515 if and only if a(n) is congruent to -1 mod 60. (End)

Examples

			29 is in the sequence since it is prime and 59 is a factor of Lucas(29) = 1149851.
		

Crossrefs

Supersequence of A230809. Cf. A000032, A132236.

Programs

  • Magma
    [5] cat [n: n in [29..5639 by 30] | IsPrime(n) and IsPrime(2*n+1)];
    
  • Mathematica
    Select[Prime@Range[740], Divisible[LucasL[#], 2*# + 1] &]
    Prepend[Select[Range[29, 5639, 30], PrimeQ[#] && PrimeQ[2*# + 1] &], 5]
  • PARI
    is_A215850(n)=isprime(n)&!real((Mod(2,2*n+1)+quadgen(5))*quadgen(5)^n) \\ - M. F. Hasler, Aug 25 2012

A231916 Primes p such that 16*p^2 + 10*p + 1 divides 2^p - 1.

Original entry on oeis.org

11, 179, 239, 431, 5231, 7079, 7211, 13451, 14879, 17939, 26111, 28019, 28499, 30851, 36479, 39779, 40559, 43391, 44699, 45179, 48731, 49919, 50411, 66791, 68111, 74099, 74699, 79151, 79811, 83459, 87299, 96731, 96779, 101399, 102551, 103391, 111959, 116411
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 15 2013

Keywords

Crossrefs

Subsequence of A002515 and of A231917. Supersequence of A231918.

Programs

  • Mathematica
    Select[Prime@Range[10996], PowerMod[2, #, 16*#^2 + 10*# + 1] == 1 &]

A374914 Primes p == 2, 3 (mod 4) with 2*p+1 prime.

Original entry on oeis.org

2, 3, 11, 23, 83, 131, 179, 191, 239, 251, 359, 419, 431, 443, 491, 659, 683, 719, 743, 911, 1019, 1031, 1103, 1223, 1439, 1451, 1499, 1511, 1559, 1583, 1811, 1931, 2003, 2039, 2063, 2339, 2351, 2399, 2459, 2543, 2699, 2819, 2903, 2939, 2963, 3023, 3299, 3359, 3491
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 23 2024

Keywords

Comments

2 together with Lucasian primes (A002515).
Primes p such that p^(p + 1) == p + 1 (mod 2*p + 1).

Examples

			2 is in this sequence because 2^(2 + 1) = 8 and 8 = 3 (mod 2*2 + 1) where 2 prime.
		

Crossrefs

Supersequence of A002515. Subsequence of A374913.
Cf. A374912.

Programs

  • Mathematica
    Select[Prime[Range[490]],Mod[#^(#+1),2#+1]==#+1 &] (* Stefano Spezia, Jul 23 2024 *)
  • PARI
    list(lim)=my(v=List([2])); forprimestep(p=3,lim\1,4, if(isprime(2*p+1), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Jul 25 2024

Formula

a(n) >> n log^2 n. - Charles R Greathouse IV, Jul 25 2024

A101787 a(n) = |S(n)| where S(n) = {i : 1 <= i <= n and 4*i-1 and 8*i-1 are primes}.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004

Keywords

Comments

Number of Lucasian primes that do not exceed 4*n-1. [Corrected by Amiram Eldar, May 23 2024]

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[Boole[And @@ PrimeQ[{4, 8}*i - 1]], {i, 1, 100}]] (* Amiram Eldar, May 23 2024 *)

Extensions

Name corrected by Amiram Eldar, May 23 2024

A101788 a(n) = n - A101787(n).

Original entry on oeis.org

0, 1, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 39, 40, 41, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 52, 53, 54, 54, 55, 56, 57, 58, 59, 60, 61
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004

Keywords

Crossrefs

Programs

  • Mathematica
    With[{m = 100}, Range[m] - Accumulate[Table[Boole[And @@ PrimeQ[{4, 8}*i - 1]], {i, 1, m}]]] (* Amiram Eldar, May 23 2024 *)

A188132 Primes p such that p == 3 (mod 4) and 6p+1 is prime.

Original entry on oeis.org

3, 7, 11, 23, 47, 83, 103, 107, 131, 151, 263, 271, 283, 311, 331, 347, 367, 443, 467, 503, 607, 683, 727, 751, 787, 863, 887, 907, 947, 971, 1063, 1091, 1103, 1151, 1171, 1283, 1327, 1423, 1427, 1451, 1487, 1511, 1531, 1567, 1607, 1787, 1811, 1823, 1831, 1847, 1907, 1931, 1987
Offset: 1

Views

Author

M. F. Hasler, Mar 21 2011

Keywords

Comments

Complement of A188131 in A007693 \ {2}.

Crossrefs

Programs

  • Mathematica
    Select[Range[3, 2000, 4], PrimeQ[#] && PrimeQ[6# + 1] &] (* Amiram Eldar, Nov 13 2019 *)
  • PARI
    forprime( p=1,1e4, p%4==3 & isprime(p*6+1) & print1(p", "))

A307121 Number of Lucasian primes less than 10^n.

Original entry on oeis.org

1, 4, 19, 100, 581, 3912, 28091, 211700, 1655601, 13286320, 109058381, 911436949, 7731247492
Offset: 1

Views

Author

Rodolfo Ruiz-Huidobro, Mar 26 2019

Keywords

Comments

The Lucasian primes are those Sophie Germain primes of the form 4k + 3. They are interesting because if they are infinite in number, then the sequence of Mersenne numbers with prime exponents contains an infinite number of composite integers.
Conjecture: about half of all Sophie Germain primes are Lucasian primes, and the rest are either 2 or a prime of the form 4k + 1.

Examples

			There are 4 Lucasian primes below 10^2: {3,11,23,83}, therefore a(2) = 4.
		

Crossrefs

Programs

  • Mathematica
    c = 0; r = 10; s = {}; Do[If[p > r, AppendTo[s, c]; r *= 10]; If[PrimeQ[p] && PrimeQ[2p + 1], c++], {p, 3, 1000003, 4}]; s (* Amiram Eldar, Mar 27 2019 *)
    lucSophies = Select[4Range[2500000] - 1, PrimeQ[#] && PrimeQ[2# + 1] &]; Table[Length[Select[lucSophies, # < 10^n &]], {n, 0, 7}]
  • PARI
    a(n) = { my(t=0); forprime(p=2,10^n,p%4==3 && ispseudoprime(1+(2*p)) && t++);t } \\ Dana Jacobsen, Mar 28 2019
    
  • Perl
    use ntheory ":all"; sub a { my($n,$t)=(shift,0); forprimes { $t++ if ($&3) == 3 && is_prime(1+($<<1)) } 10**$n; $t; } # Dana Jacobsen, Mar 28 2019

Extensions

a(9)-a(11) from Amiram Eldar, Mar 27 2019
a(12) from Amiram Eldar, Mar 31 2019
a(13) from Dana Jacobsen, Apr 02 2019

A307176 Number of Sophie Germain primes of the form 4k + 1 less than 10^n.

Original entry on oeis.org

1, 5, 17, 89, 589, 3833, 27940, 211439, 1653257, 13283194, 109058142, 911411528, 7731354496
Offset: 1

Views

Author

Rodolfo Ruiz-Huidobro, Mar 27 2019

Keywords

Comments

Sophie Germain primes can alternatively be Lucasian primes, primes of the form 4k + 1, or, the individual prime 2.

Examples

			There are five Sophie Germain Primes of the form 4k + 1 below 10^2: {5, 29, 41, 53, 89}, therefore a(2) = 5.
		

Crossrefs

Programs

  • Mathematica
    nonLucSophies = Select[4Range[2500000] + 1, PrimeQ[#] && PrimeQ[2# + 1] &]; Table[Length[Select[nonLucSophies, # < 10^n &]], {n, 0, 7}]

Formula

a(n) < A092816(n).
a(n) <= A091098(n) (with equality for n = 1).
a(n) = A092816(n) - A307121(n) - 1.

A350703 a(n) is the least integer k such that (2*n*k+1) | (2^k-1).

Original entry on oeis.org

3, 18, 5, 9, 15, 50, 40, 16, 7, 156, 60, 25, 180, 102, 113, 81, 10, 50, 29, 159, 51, 56, 24, 36, 47, 90, 337, 72, 55, 106, 33, 102, 780, 28, 117, 25, 155, 540, 60, 104, 223, 1012, 168, 180, 91, 540, 3132, 47, 510, 412, 154, 45, 80, 432, 201, 36, 90, 144, 97, 53, 279, 880
Offset: 1

Views

Author

Karl-Heinz Hofmann, Feb 03 2022

Keywords

Comments

The formula 2nk+1 is used to find trivial factors of Mersenne(p). Here it is used for all exponents (prime exponents and not prime exponents).
Mersenne primes of A000043 can be found in this sequence too (except for 2). E.g.: a(1, 3, 9, 315, 3855, 13797) = A000043(2..7).
If n mod 4 = 2 then a(n) must be composite.

Examples

			a(5) = 15: 2^15 - 1 = 32767; 2*5*15 + 1 = 151; 32767 mod 151 = 0, and there are no numbers < 15 which satisfy the requirement for n = 5.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = 1}, While[PowerMod[2, k, 2*n*k + 1] != 1, k++]; k];  Array[a, 62] (* Amiram Eldar, Feb 03 2022 *)
  • PARI
    a(n) = my(k=1); while (Mod(2, 2*n*k+1)^k != 1, k++); k; \\ Michel Marcus, Feb 03 2022
  • Python
    def A350703(k,expo):
        while pow(2, expo, 2*k*expo+1) != 1: expo += 1
        return expo
    print([A350703(k,1) for k in range(1, 63)])
    
Previous Showing 31-40 of 42 results. Next