cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A176485 First column of triangle in A176452.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 13, 25, 48, 92, 176, 338, 649, 1246, 2392, 4594, 8823, 16945, 32545, 62509, 120060, 230598, 442910, 850701, 1633948, 3138339, 6027842, 11577747, 22237515, 42711863, 82037200, 157569867, 302646401, 581296715, 1116503866, 2144482948, 4118935248, 7911290530
Offset: 1

Views

Author

N. J. A. Sloane, Dec 07 2010

Keywords

Comments

a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 3*p(k+1), see example. [Joerg Arndt, Dec 18 2012]
Row 2 of Table 1 of Elsholtz, row 1 being A002572. - Jonathan Vos Post, Aug 30 2011

Examples

			From _Joerg Arndt_, Dec 18 2012: (Start)
There are a(7+1)=25 compositions 7=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 3*p(k+1):
[ 1]  [ 1 1 1 1 1 1 1 ]
[ 2]  [ 1 1 1 1 1 2 ]
[ 3]  [ 1 1 1 1 2 1 ]
[ 4]  [ 1 1 1 1 3 ]
[ 5]  [ 1 1 1 2 1 1 ]
[ 6]  [ 1 1 1 2 2 ]
[ 7]  [ 1 1 1 3 1 ]
[ 8]  [ 1 1 2 1 1 1 ]
[ 9]  [ 1 1 2 1 2 ]
[10]  [ 1 1 2 2 1 ]
[11]  [ 1 1 2 3 ]
[12]  [ 1 1 3 1 1 ]
[13]  [ 1 1 3 2 ]
[14]  [ 1 2 1 1 1 1 ]
[15]  [ 1 2 1 1 2 ]
[16]  [ 1 2 1 2 1 ]
[17]  [ 1 2 1 3 ]
[18]  [ 1 2 2 1 1 ]
[19]  [ 1 2 2 2 ]
[20]  [ 1 2 3 1 ]
[21]  [ 1 2 4 ]
[22]  [ 1 3 1 1 1 ]
[23]  [ 1 3 1 2 ]
[24]  [ 1 3 2 1 ]
[25]  [ 1 3 3 ]
(End)
		

Crossrefs

Programs

  • Mathematica
    b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]];
    a[n_] := b[2n-1, 1, 3];
    Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
  • PARI
    /* g.f. as given in the Elsholtz/Heuberger/Prodinger reference */
    N=66;  q='q+O('q^N);
    t=3;  /* t-ary: t=2 for A002572, t=3 for A176485, t=4 for A176503  */
    L=2 + 2*ceil( log(N) / log(t) );
    f(k) = (1-t^k)/(1-t);
    la(j) = prod(i=1, j, q^f(i) / ( 1 - q^f(i) ) );
    nm=sum(j=0, L, (-1)^j * q^f(j) * la(j) );
    dn=sum(j=0, L, (-1)^j * la(j) );
    gf = nm / dn;
    Vec( gf )
    /* Joerg Arndt, Dec 27 2012 */

Formula

a(n) = A294775(n-1,2). - Alois P. Heinz, Nov 08 2017

Extensions

Extended by Jonathan Vos Post, Aug 30 2011
Added terms beyond a(20)=62509, Joerg Arndt, Dec 18 2012.

A176503 Leading column of triangle in A176463.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 15, 29, 57, 112, 220, 432, 848, 1666, 3273, 6430, 12632, 24816, 48754, 95783, 188177, 369696, 726312, 1426930, 2803381, 5507590, 10820345, 21257915, 41763825, 82050242, 161197933, 316693445, 622183778, 1222357651, 2401474098, 4717995460
Offset: 1

Views

Author

N. J. A. Sloane, Dec 07 2010

Keywords

Comments

a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 4*p(k+1), see example. [Joerg Arndt, Dec 18 2012]

Examples

			From _Joerg Arndt_, Dec 18 2012: (Start)
There are a(6+1)=15 compositions 6=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 4*p(k+1):
[ 1]  [ 1 1 1 1 1 1 ]
[ 2]  [ 1 1 1 1 2 ]
[ 3]  [ 1 1 1 2 1 ]
[ 4]  [ 1 1 1 3 ]
[ 5]  [ 1 1 2 1 1 ]
[ 6]  [ 1 1 2 2 ]
[ 7]  [ 1 1 3 1 ]
[ 8]  [ 1 1 4 ]
[ 9]  [ 1 2 1 1 1 ]
[10]  [ 1 2 1 2 ]
[11]  [ 1 2 2 1 ]
[12]  [ 1 2 3 ]
[13]  [ 1 3 1 1 ]
[14]  [ 1 3 2 ]
[15]  [ 1 4 1 ]
(End)
		

Crossrefs

Programs

  • Mathematica
    b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]];
    a[n_] := b[3n-2, 1, 4];
    Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
  • PARI
    /* g.f. as given in the Elsholtz/Heuberger/Prodinger reference */
    N=66;  q='q+O('q^N);
    t=4;  /* t-ary: t=2 for A002572, t=3 for A176485, t=4 for A176503  */
    L=2 + 2*ceil( log(N) / log(t) );
    f(k) = (1-t^k)/(1-t);
    la(j) = prod(i=1, j, q^f(i) / ( 1 - q^f(i) ) );
    nm=sum(j=0, L, (-1)^j * q^f(j) * la(j) );
    dn=sum(j=0, L, (-1)^j * la(j) );
    gf = nm / dn;
    Vec( gf )
    /* Joerg Arndt, Dec 27 2012 */

Formula

a(n) = A294775(n-1,3). - Alois P. Heinz, Nov 08 2017

Extensions

Added terms beyond a(13)=848, Joerg Arndt, Dec 18 2012

A002848 Number of maximal collections of pairwise disjoint subsets {X,Y,Z} of {1, 2, ..., n} with X + Y = Z (as in A002849), with the property that n is in one of the subsets.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 3, 7, 15, 12, 30, 8, 32, 164, 21, 114, 867, 3226, 720, 4414, 24412, 4079, 31454, 3040, 25737, 252727, 20505, 191778, 2140186, 14554796, 1669221, 17754992, 148553131, 14708525, 177117401, 10567748, 138584026, 1953134982, 103372655, 1431596750, 22374792451, 218018425976, 16852166906, 254094892254
Offset: 0

Views

Author

Keywords

Examples

			Examples from _Alois P. Heinz_, Feb 12 2010:
A002848(7) = 3:
  [1, 3, 4], [2, 5, 7]
  [1, 5, 6], [3, 4, 7]
  [2, 3, 5], [1, 6, 7]
A002848(8) = 7:
  [1, 3, 4], [2, 6, 8]
  [1, 4, 5], [2, 6, 8]
  [1, 6, 7], [3, 5, 8]
  [2, 3, 5], [1, 7, 8]
  [2, 4, 6], [1, 7, 8]
  [2, 4, 6], [3, 5, 8]
  [3, 4, 7], [2, 6, 8]
A002848(10) = 12:
  [1, 4, 5], [2, 6, 8], [3, 7, 10]
  [1, 4, 5], [3, 6, 9], [2, 8, 10]
  [1, 5, 6], [3, 4, 7], [2, 8, 10]
  [1, 6, 7], [4, 5, 9], [2, 8, 10]
  [1, 7, 8], [2, 3, 5], [4, 6, 10]
  [1, 8, 9], [2, 3, 5], [4, 6, 10]
  [1, 8, 9], [2, 4, 6], [3, 7, 10]
  [1, 8, 9], [2, 5, 7], [4, 6, 10]
  [2, 4, 6], [3, 5, 8], [1, 9, 10]
  [2, 6, 8], [3, 4, 7], [1, 9, 10]
  [2, 6, 8], [4, 5, 9], [3, 7, 10]
  [2, 7, 9], [3, 5, 8], [4, 6, 10]
See A002849 for further examples.
		

References

  • R. K. Guy, "Sedlacek's Conjecture on Disjoint Solutions of x+y= z," in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223.
  • R. K. Guy, "Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics," in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976.
  • Richard K. Guy, The unity of combinatorics, in Proc. 25th Iran. Math. Conf., Tehran, (1994), Math. Appl. 329 (1994) 129-159, Kluwer Acad. Publ., Dordrecht, 1995.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

For n >= 2, a(n) = A002849(n) if n == 0,3,7,10 (mod 12), otherwise a(n) = A002849(n) - A002849(n-1). - _Franklin T. Adams-Watters; corrected by Max Alekseyev, Jul 06 2023

Extensions

Edited by N. J. A. Sloane, Feb 10 2010, based on posting to the Sequence Fans Mailing List by Franklin T. Adams-Watters, R. K. Guy, R. H. Hardin, Alois P. Heinz, Andrew Weimholt, Max Alekseyev and others
a(32)-a(39) from Max Alekseyev, Feb 23 2012
Definition corrected by Max Alekseyev, Nov 16 2012, Jul 06 2023
a(40)-a(42) from Fausto A. C. Cariboni, Mar 12 2017
a(43)-a(44) computed from A002849 by Max Alekseyev, Jul 06 2023

A202705 Number of irreducible ways to split 1, 2, 3, ..., 3n into n arithmetic progressions each with 3 terms.

Original entry on oeis.org

1, 1, 1, 2, 6, 25, 115, 649, 4046, 29674, 228030, 1987700, 18402704, 188255116, 2030067605, 23829298479, 293949166112, 3909410101509, 54360507919179, 806312701922676
Offset: 0

Views

Author

N. J. A. Sloane, Dec 26 2011

Keywords

Comments

"Irreducible" means that there is no j such that the first j of the triples are a partition of 1, ..., 3j.

References

  • R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, Univ. Calgary, Dept. Mathematics, Research Paper No. 129, 1971.
  • R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223.
  • R. K. Guy, Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics, in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976.

Crossrefs

All of A279197, A279198, A202705, A279199, A104429, A282615 are concerned with counting solutions to X+Y=2Z in various ways.
See also A002848, A002849.

Formula

G.f.: 2 - 1/g where g is g.f. for A104429. [corrected by Martin Fuller, Jul 08 2025]
a(n) = A279197(n) + 2*A279198(n) for n>0.

Extensions

a(11)-a(14) from Alois P. Heinz, Dec 28 2011
a(15)-a(17) from Fausto A. C. Cariboni, Feb 22 2017
a(18)-a(19) from Martin Fuller, Jul 08 2025

A279197 Number of self-conjugate inseparable solutions of X + Y = 2Z (integer, disjoint triples from {1,2,3,...,3n}).

Original entry on oeis.org

1, 1, 2, 2, 11, 11, 55, 58, 486, 442, 4218, 3924, 45096, 42013, 538537, 505830, 7368091, 6959545, 111877294, 105723374, 1886636688, 1763443165, 34585786729, 32401780965, 687085545694, 642233156868, 14691047314846, 13788837896728, 340221989868538, 317342350394678, 8327884506579315
Offset: 1

Views

Author

N. J. A. Sloane, Dec 15 2016

Keywords

Comments

In Richard Guy's letter, the term 50 is marked with a question mark. Peter Kagey has shown that the value should be 55. - N. J. A. Sloane, Feb 15 2017
From Peter Kagey, Feb 14 2017: (Start)
An inseparable solution is one in which "there is no j such that the first j of the triples are a partition of 1, ..., 3j" (See A202705.)
A self-conjugate solution is one in which for every triple (a, b, c) in the partition there exists a "conjugate" triple (m-a, m-b, m-c) or (m-b, m-a, m-c) where m = 3n+1.
(End)

Examples

			Examples of solutions X,Y,Z for n=5:
  2,4,3
  5,7,6
  1,15,8
  9,11,10
  12,14,13
and in his letter Richard Guy has drawn links pairing the first and fifth solutions, and the second and fourth solutions.
For n = 2 the a(2) = 1 solution is
  [(2,6,4),(1,5,3)].
For n = 3 the a(3) = 2 solutions are
  [(1,7,4),(3,9,6),(2,8,5)] and
  [(2,4,3),(6,8,7),(1,9,5)].
		

References

  • R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, Univ. Calgary, Dept. Mathematics, Research Paper No. 129, 1971.
  • R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223.
  • R. K. Guy, Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics, in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976.

Crossrefs

All of A279197, A279198, A202705, A279199, A104429, A282615 are concerned with counting solutions to X+Y=2Z in various ways.
See also A002848, A002849.

Formula

a(n) = A282616(n) - A282615(n). - Martin Fuller, Jul 15 2025

Extensions

a(7) corrected and a(8)-a(13) added by Peter Kagey, Feb 14 2017
a(14)-a(16) from Fausto A. C. Cariboni, Feb 27 2017
a(17) from Fausto A. C. Cariboni, Mar 22 2017
a(18)-a(24) from Bert Dobbelaere, May 29 2025
a(25)-a(31) from Martin Fuller, Jul 15 2025

A279199 Number of reducible ways to split 1, 2, 3, ..., 3n into n arithmetic progressions each with 3 terms: a(n) = A104429(n) - A202705(n).

Original entry on oeis.org

0, 0, 1, 3, 9, 30, 117, 512, 2597, 14892, 99034, 721350, 5909324, 52578654, 516148082, 5422071091, 61889692290, 749456672155, 9767058240577, 134007989313530, 1958535749524107
Offset: 0

Views

Author

N. J. A. Sloane, Dec 15 2016

Keywords

References

  • R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, Univ. Calgary, Dept. Mathematics, Research Paper No. 129, 1971.
  • R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223.
  • R. K. Guy, Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics, in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976.

Crossrefs

All of A279197, A279198, A202705, A279199, A104429, A282615 are concerned with counting solutions to X+Y=2Z in various ways.
See also A002848, A002849.

Formula

a(n) = A104429(n)-A202705(n) = Sum_{i=1..n-1} A104429(i)*A202705(n-i). - Martin Fuller, Jul 08 2025

Extensions

Definition corrected by N. J. A. Sloane, Jan 09 2017 at the suggestion of Fausto A. C. Cariboni.
a(15)-a(17) from Fausto A. C. Cariboni, Feb 22 2017
a(18)-a(20) from Martin Fuller, Jul 08 2025

A002573 Restricted partitions.

Original entry on oeis.org

0, 1, 1, 2, 4, 7, 12, 22, 39, 70, 126, 225, 404, 725, 1299, 2331, 4182, 7501, 13458, 24145, 43316, 77715, 139430, 250152, 448808, 805222, 1444677, 2591958, 4650342, 8343380, 14969239, 26856992, 48185362, 86451602, 155106844, 278284440, 499283177, 895787396, 1607174300, 2883507098
Offset: 1

Views

Author

Keywords

Comments

Number of compositions n=p(1)+p(2)+...+p(m) with p(1)=2 and p(k) <= 2*p(k+1), see example. [Joerg Arndt, Dec 18 2012]

Examples

			From _Joerg Arndt_, Dec 18 2012: (Start)
There are a(8)=22 compositions 8=p(1)+p(2)+...+p(m) with p(1)=2 and p(k) <= 2*p(k+1):
[ 1]  [ 2 1 1 1 1 1 1 ]
[ 2]  [ 2 1 1 1 1 2 ]
[ 3]  [ 2 1 1 1 2 1 ]
[ 4]  [ 2 1 1 2 1 1 ]
[ 5]  [ 2 1 1 2 2 ]
[ 6]  [ 2 1 2 1 1 1 ]
[ 7]  [ 2 1 2 1 2 ]
[ 8]  [ 2 1 2 2 1 ]
[ 9]  [ 2 1 2 3 ]
[10]  [ 2 2 1 1 1 1 ]
[11]  [ 2 2 1 1 2 ]
[12]  [ 2 2 1 2 1 ]
[13]  [ 2 2 2 1 1 ]
[14]  [ 2 2 2 2 ]
[15]  [ 2 2 3 1 ]
[16]  [ 2 2 4 ]
[17]  [ 2 3 1 1 1 ]
[18]  [ 2 3 1 2 ]
[19]  [ 2 3 2 1 ]
[20]  [ 2 3 3 ]
[21]  [ 2 4 1 1 ]
[22]  [ 2 4 2 ]
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A column of the triangle in A176431.

Programs

  • Maple
    v := proc(c,d) option remember; local i; if d < 0 or c < 0 then 0 elif d = c then 1 else add(v(i,d-c),i=1..2*c); fi; end; [ seq(v(2,n), n=1..50) ];
  • Mathematica
    v[c_, d_] :=  v[c, d] = If[d < 0 || c < 0, 0, If[d == c, 1, Sum[v[i, d - c], {i, 1, 2*c}]]]; a[n_] := v[2, n]; Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Jan 30 2012, after Maple *)

A194628 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 31, 61, 121, 240, 476, 944, 1872, 3712, 7362, 14601, 28958, 57432, 113904, 225904, 448034, 888583, 1762321, 3495200, 6932008, 13748208, 27266738, 54077957, 107252486, 212713209, 421872826, 836697836, 1659417786, 3291113315, 6527245245, 12945446241, 25674625681
Offset: 1

Views

Author

Jonathan Vos Post, Aug 30 2011

Keywords

Comments

a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 5*p(k+1), see example. - Joerg Arndt, Dec 18 2012
Row 4 of Table 1 of Elsholtz, row 1 being A002572, row 2 being A176485, and row 3 being A176503.

Examples

			From _Joerg Arndt_, Dec 18 2012: (Start)
There are a(6+1)=16 compositions 6=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 5*p(k+1):
[ 1]  [ 1 1 1 1 1 1 ]
[ 2]  [ 1 1 1 1 2 ]
[ 3]  [ 1 1 1 2 1 ]
[ 4]  [ 1 1 1 3 ]
[ 5]  [ 1 1 2 1 1 ]
[ 6]  [ 1 1 2 2 ]
[ 7]  [ 1 1 3 1 ]
[ 8]  [ 1 1 4 ]
[ 9]  [ 1 2 1 1 1 ]
[10]  [ 1 2 1 2 ]
[11]  [ 1 2 2 1 ]
[12]  [ 1 2 3 ]
[13]  [ 1 3 1 1 ]
[14]  [ 1 3 2 ]
[15]  [ 1 4 1 ]
[16]  [ 1 5 ]
(End)
		

Crossrefs

Programs

  • Mathematica
    b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n - j, k (r - j), k], {j, 0, Min[n, r]}]]];
    a[n_] := b[4n - 3, 1, 5];
    Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
  • PARI
    /* see A002572, set t=5 */

Formula

a(n) = A294775(n-1,4). - Alois P. Heinz, Nov 08 2017

Extensions

Terms beyond a(20)=113904 added by Joerg Arndt, Dec 18 2012
Invalid empirical g.f. removed by Alois P. Heinz, Nov 08 2017

A002574 Restricted partitions.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 13, 24, 42, 76, 137, 245, 441, 792, 1420, 2550, 4576, 8209, 14732, 26433, 47424, 85092, 152670, 273914, 491453, 881744, 1581985, 2838333, 5092398, 9136528, 16392311, 29410243, 52766343, 94670652, 169853138, 304741614, 546751437, 980952673, 1759973660
Offset: 1

Views

Author

Keywords

Comments

Number of compositions n=p(1)+p(2)+...+p(m) with p(1)=3 and p(k) <= 2*p(k+1), see example. [Joerg Arndt, Dec 18 2012]

Examples

			From _Joerg Arndt_, Dec 18 2012: (Start)
There are a(8)=13 compositions 8=p(1)+p(2)+...+p(m) with p(1)=3 and p(k) <= 2*p(k+1):
[ 1]  [ 3 1 1 1 1 1 ]
[ 2]  [ 3 1 1 1 2 ]
[ 3]  [ 3 1 1 2 1 ]
[ 4]  [ 3 1 2 1 1 ]
[ 5]  [ 3 1 2 2 ]
[ 6]  [ 3 2 1 1 1 ]
[ 7]  [ 3 2 1 2 ]
[ 8]  [ 3 2 2 1 ]
[ 9]  [ 3 2 3 ]
[10]  [ 3 3 1 1 ]
[11]  [ 3 3 2 ]
[12]  [ 3 4 1 ]
[13]  [ 3 5 ]
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    v := proc(c,d) option remember; local i; if d < 0 or c < 0 then 0 elif d = c then 1 else add(v(i,d-c),i=1..2*c); fi; end; [ seq(v(3,n), n=1..50) ];
  • Mathematica
    v[c_, d_] := v[c, d] = If[d < 0 || c < 0, 0, If[d == c, 1, Sum[v[i, d-c], {i, 1, 2*c}]]]; a[n_] := v[3, n]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Apr 05 2013, after Maple *)

Extensions

More terms from Michael Somos

A047913 Triangle of numbers a(n,k) = number of partitions of k such that k = n + n_1 + n_2 + ... + n_t where n_1 <= 2n and n_{i+1} <= 2n_i for all i.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 4, 7, 9, 1, 1, 2, 4, 7, 12, 16, 1, 1, 2, 4, 7, 13, 22, 28, 1, 1, 2, 4, 7, 13, 24, 39, 50, 1, 1, 2, 4, 7, 13, 24, 42, 70, 89, 1, 1, 2, 4, 7, 13, 24, 43, 76, 126, 159, 1, 1, 2, 4, 7, 13, 24, 43, 78, 137, 225, 285
Offset: 1

Views

Author

Keywords

Comments

Triangle is read in this order: a(1,1), a(2,2), a(1,2), a(3,3), a(2,3), a(1,3), a(4,4), ...
Rows are the columns in the table at the end of the Minc reference, read bottom to top. - Joerg Arndt, Jan 15 2024

Examples

			Triangle begins:
1;
1, 1;
1, 1, 2;
1, 1, 2, 3;
1, 1, 2, 4, 5;
1, 1, 2, 4, 7,  9;
1, 1, 2, 4, 7, 12, 16;
1, 1, 2, 4, 7, 13, 22, 28;
1, 1, 2, 4, 7, 13, 24, 39, 50;
1, 1, 2, 4, 7, 13, 24, 42, 70,  89;
1, 1, 2, 4, 7, 13, 24, 43, 76, 126, 159;
1, 1, 2, 4, 7, 13, 24, 43, 78, 137, 225, 285;
...
Rows approach A002843. - _Joerg Arndt_, Jan 15 2024
		

Crossrefs

Rows give A002572, A002573, A002574, ..., columns approach A002843.
Cf. A049286 (triangle with reversed rows).

Programs

  • Mathematica
    a[n_, n_] = 1; a[n_?Positive, k_?Positive] := a[n, k] = Sum[a[i, k-n], {i, 1, 2*n}]; a[n_, k_] = 0; Table[a[n, k], {k, 1, 12}, {n, k, 1, -1}] // Flatten (* Jean-François Alcover, Oct 21 2013 *)

Formula

a(n, n)=1, a(n, k) = Sum_{i=1..2n} a(i, k-n).
Previous Showing 11-20 of 39 results. Next