cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A002572 Number of partitions of 1 into n powers of 1/2; or (according to one definition of "binary") the number of binary rooted trees.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 16, 28, 50, 89, 159, 285, 510, 914, 1639, 2938, 5269, 9451, 16952, 30410, 54555, 97871, 175586, 315016, 565168, 1013976, 1819198, 3263875, 5855833, 10506175, 18849555, 33818794, 60675786, 108861148, 195312750, 350419594, 628704034, 1127987211, 2023774607, 3630948907
Offset: 1

Views

Author

Keywords

Comments

This is similar to a question about Egyptian fractions, except that there the denominators of the fractions must be distinct. - N. J. A. Sloane, Jan 13 2021
v(c, d) is the number of partitions of d into positive integers of the form d = c + c_1 + c_2 + ... + c_n, where c_1 <= 2*c, c_{i+1} <= 2*c_i. See Minc link.
Top row of Table 1 of Elsholtz. [Jonathan Vos Post, Aug 30 2011]
a(n+1) is the number of compositions n = p(1) + p(2) + ... + p(m) with p(1)=1 and p(k) <= 2*p(k+1), see example. [Joerg Arndt, Dec 18 2012]
Over an algebraically closed field of characteristic 2, a(n) gives dimensions of the generic cohomology groups H^i_gen(SL_2,L(1)) which are isomorphic to algebraic group cohomology groups H^i(SL_2,L(1)^[i]), where ^[i] denotes i-th Frobenius twist. [David I. Stewart, Oct 22 2013]

Examples

			{1}; {1/2 + 1/2}; { 1/2 + 1/4 + 1/4 }; { 1/2 + 1/4 + 1/8 + 1/8, 1/4 + 1/4 + 1/4 + 1/4 }; ...
From _Joerg Arndt_, Dec 18 2012: (Start)
There are a(7+1)=16 compositions 7=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 2*p(k+1):
[ 1]  [ 1 1 1 1 1 1 1 ]
[ 2]  [ 1 1 1 1 1 2 ]
[ 3]  [ 1 1 1 1 2 1 ]
[ 4]  [ 1 1 1 2 1 1 ]
[ 5]  [ 1 1 1 2 2 ]
[ 6]  [ 1 1 2 1 1 1 ]
[ 7]  [ 1 1 2 1 2 ]
[ 8]  [ 1 1 2 2 1 ]
[ 9]  [ 1 1 2 3 ]
[10]  [ 1 2 1 1 1 1 ]
[11]  [ 1 2 1 1 2 ]
[12]  [ 1 2 1 2 1 ]
[13]  [ 1 2 2 1 1 ]
[14]  [ 1 2 2 2 ]
[15]  [ 1 2 3 1 ]
[16]  [ 1 2 4 ]
(End)
From _Joerg Arndt_, Dec 26 2012: (Start)
There are a(8)=16 partitions of 1 into 8 powers of 1/2 (dots denote zeros in the tables of multiplicities in the left column)
[ 1]  [ . 1 1 1 1 1 1 2 ]     + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 2/128
[ 2]  [ . 1 1 1 1 . 4 . ]     + 1/2 + 1/4 + 1/8 + 1/16 + 4/64
[ 3]  [ . 1 1 1 . 3 2 . ]     + 1/2 + 1/4 + 1/8 + 3/32 + 2/64
[ 4]  [ . 1 1 . 3 1 2 . ]     + 1/2 + 1/4 + 3/16 + 1/32 + 2/64
[ 5]  [ . 1 1 . 2 4 . . ]     + 1/2 + 1/4 + 2/16 + 4/32
[ 6]  [ . 1 . 3 1 1 2 . ]     + 1/2 + 3/8 + 1/16 + 1/32 + 2/64
[ 7]  [ . 1 . 3 . 4 . . ]     + 1/2 + 3/8 + 4/32
[ 8]  [ . 1 . 2 3 2 . . ]     + 1/2 + 2/8 + 3/16 + 2/32
[ 9]  [ . 1 . 1 6 . . . ]     + 1/2 + 1/8 + 6/16
[10]  [ . . 3 1 1 1 2 . ]     + 3/4 + 1/8 + 1/16 + 1/32 + 2/64
[11]  [ . . 3 1 . 4 . . ]     + 3/4 + 1/8 + 4/32
[12]  [ . . 3 . 3 2 . . ]     + 3/4 + 3/16 + 2/32
[13]  [ . . 2 3 1 2 . . ]     + 2/4 + 3/8 + 1/16 + 2/32
[14]  [ . . 2 2 4 . . . ]     + 2/4 + 2/8 + 4/16
[15]  [ . . 1 5 2 . . . ]     + 1/4 + 5/8 + 2/16
[16]  [ . . . 8 . . . . ]     + 8/8
(End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 192-194, 307.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    v := proc(c,d) option remember; local i; if d < 0 or c < 0 then 0 elif d = c then 1 else add(v(i,d-c),i=1..2*c); fi; end; [ seq(v(1,n), n=1..50) ];
  • Mathematica
    v[c_, d_] := v[c, d] = If[d < 0 || c < 0, 0, If[d == c, 1, Sum[v[i, d - c], {i, 1, 2*c}]]]; a[n_] := v[1, n-1]; a[1] = 1; Table[a[n], {n, 1, 36}] (* Jean-François Alcover, Oct 19 2011, after Maple *)
  • PARI
    v(c,d) = if ( d<0 || c<0, 0, if ( d==c, 1, sum(i=1,2*c, v(i,d-c) ) ) )
    
  • PARI
    /* g.f. as given in the Elsholtz/Heuberger/Prodinger reference */
    N=66;  q='q+O('q^N);
    t=2;  /* t-ary: t=2 for A002572, t=3 for A176485, t=4 for A176503  */
    L=2 + 2*ceil( log(N) / log(t) );
    f(k)=(1-t^k)/(1-t);
    la(j)=prod(i=1, j, q^f(i) / ( 1 - q^f(i) ) );
    nm=sum(j=0, L, (-1)^j * q^f(j) * la(j) );
    dn=sum(j=0, L, (-1)^j * la(j) );
    gf=nm / dn;
    Vec( gf )
    /* Joerg Arndt, Dec 27 2012 */
    
  • PARI
    {a(n, k=2) = if( n<2 && k==2, n>=0, nMichael Somos, Dec 20 2016 */

Formula

From Jon E. Schoenfield, Dec 18 2016: (Start)
Numerically, it appears that
lim_{n->infinity} a(n)/c0^n = c1
and
lim_{n->infinity} (a(n)/c0^n - c1) / c2^n = c3
where
c0 = 1.79414718754168546349846498809380776370136441826513
55647141291458811011534167435879115275875728251544
55034381754309507738861994388752350104180891093803
27324310643547892073673907996758374498542252887021
90... = A102375
c1 = 0.14185320208540933707157739062733520381135377764439
00938624762999524081108574037129602775796177848175
96757823284956317508884467180902882086032012675483
68631687927534330190816399081295424373415296405657
19...
c2 = 0.71317957835995615685267138702642988919007297942329
35...
c3 = 0.06124104103121269745282188448763211918477582400104
06... (End)
a(n) = A294775(n-1,1). - Alois P. Heinz, Nov 08 2017

A294775 Number A(n,k) of partitions of 1 into exactly k*n+1 powers of 1/(k+1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 4, 5, 1, 1, 1, 1, 2, 4, 7, 9, 1, 1, 1, 1, 2, 4, 8, 13, 16, 1, 1, 1, 1, 2, 4, 8, 15, 25, 28, 1, 1, 1, 1, 2, 4, 8, 16, 29, 48, 50, 1, 1, 1, 1, 2, 4, 8, 16, 31, 57, 92, 89, 1, 1, 1, 1, 2, 4, 8, 16, 32, 61, 112, 176, 159, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 08 2017

Keywords

Examples

			A(4,1) = 3: [1/4,1/4,1/4,1/8,1/8], [1/2,1/8,1/8,1/8,1/8], [1/2,1/4,1/8,1/16,1/16].
A(5,2) = 7: [1/9,1/9,1/9,1/9,1/9,1/9,1/9,1/9,1/27,1/27,1/27], [1/3,1/9,1/9,1/9,1/9,1/27,1/27,1/27,1/27,1/27,1/27], [1/3,1/9,1/9,1/9,1/9,1/9,1/27,1/27,1/81,1/81,1/81], [1/3,1/3,1/27,1/27,1/27,1/27,1/27,1/27,1/27,1/27,1/27], [1/3,1/3,1/9,1/27,1/27,1/27,1/27,1/27,1/81,1/81,1/81], [1/3,1/3,1/9,1/9,1/27,1/81,1/81,1/81,1/81,1/81,1/81], [1/3,1/3,1/9,1/9,1/27,1/27,1/81,1/81,1/243,1/243,1/243].
Square array A(n,k) begins:
  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  2,  2,  2,  2,  2,  2,  2,  2, ...
  1,  3,  4,  4,  4,  4,  4,  4,  4, ...
  1,  5,  7,  8,  8,  8,  8,  8,  8, ...
  1,  9, 13, 15, 16, 16, 16, 16, 16, ...
  1, 16, 25, 29, 31, 32, 32, 32, 32, ...
  1, 28, 48, 57, 61, 63, 64, 64, 64, ...
		

Crossrefs

Columns k=0-10 give (offsets may differ): A000012, A002572, A176485, A176503, A194628, A194629, A194630, A194631, A194632, A194633, A295081.
Main diagonal gives A011782(n-1) for n>0.
Cf. A294746.

Programs

  • Maple
    b:= proc(n, r, k) option remember;
          `if`(n `if`(k=0, 1, b(k*n+1, 1, k+1)):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n - j, k*(r - j), k], {j, 0, Min[n, r]}]]];
    A[n_, k_] := If[k == 0, 1, b[k*n + 1, 1, k + 1]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Nov 11 2017, after Alois P. Heinz *)

A176485 First column of triangle in A176452.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 13, 25, 48, 92, 176, 338, 649, 1246, 2392, 4594, 8823, 16945, 32545, 62509, 120060, 230598, 442910, 850701, 1633948, 3138339, 6027842, 11577747, 22237515, 42711863, 82037200, 157569867, 302646401, 581296715, 1116503866, 2144482948, 4118935248, 7911290530
Offset: 1

Views

Author

N. J. A. Sloane, Dec 07 2010

Keywords

Comments

a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 3*p(k+1), see example. [Joerg Arndt, Dec 18 2012]
Row 2 of Table 1 of Elsholtz, row 1 being A002572. - Jonathan Vos Post, Aug 30 2011

Examples

			From _Joerg Arndt_, Dec 18 2012: (Start)
There are a(7+1)=25 compositions 7=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 3*p(k+1):
[ 1]  [ 1 1 1 1 1 1 1 ]
[ 2]  [ 1 1 1 1 1 2 ]
[ 3]  [ 1 1 1 1 2 1 ]
[ 4]  [ 1 1 1 1 3 ]
[ 5]  [ 1 1 1 2 1 1 ]
[ 6]  [ 1 1 1 2 2 ]
[ 7]  [ 1 1 1 3 1 ]
[ 8]  [ 1 1 2 1 1 1 ]
[ 9]  [ 1 1 2 1 2 ]
[10]  [ 1 1 2 2 1 ]
[11]  [ 1 1 2 3 ]
[12]  [ 1 1 3 1 1 ]
[13]  [ 1 1 3 2 ]
[14]  [ 1 2 1 1 1 1 ]
[15]  [ 1 2 1 1 2 ]
[16]  [ 1 2 1 2 1 ]
[17]  [ 1 2 1 3 ]
[18]  [ 1 2 2 1 1 ]
[19]  [ 1 2 2 2 ]
[20]  [ 1 2 3 1 ]
[21]  [ 1 2 4 ]
[22]  [ 1 3 1 1 1 ]
[23]  [ 1 3 1 2 ]
[24]  [ 1 3 2 1 ]
[25]  [ 1 3 3 ]
(End)
		

Crossrefs

Programs

  • Mathematica
    b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]];
    a[n_] := b[2n-1, 1, 3];
    Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
  • PARI
    /* g.f. as given in the Elsholtz/Heuberger/Prodinger reference */
    N=66;  q='q+O('q^N);
    t=3;  /* t-ary: t=2 for A002572, t=3 for A176485, t=4 for A176503  */
    L=2 + 2*ceil( log(N) / log(t) );
    f(k) = (1-t^k)/(1-t);
    la(j) = prod(i=1, j, q^f(i) / ( 1 - q^f(i) ) );
    nm=sum(j=0, L, (-1)^j * q^f(j) * la(j) );
    dn=sum(j=0, L, (-1)^j * la(j) );
    gf = nm / dn;
    Vec( gf )
    /* Joerg Arndt, Dec 27 2012 */

Formula

a(n) = A294775(n-1,2). - Alois P. Heinz, Nov 08 2017

Extensions

Extended by Jonathan Vos Post, Aug 30 2011
Added terms beyond a(20)=62509, Joerg Arndt, Dec 18 2012.

A194628 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 31, 61, 121, 240, 476, 944, 1872, 3712, 7362, 14601, 28958, 57432, 113904, 225904, 448034, 888583, 1762321, 3495200, 6932008, 13748208, 27266738, 54077957, 107252486, 212713209, 421872826, 836697836, 1659417786, 3291113315, 6527245245, 12945446241, 25674625681
Offset: 1

Views

Author

Jonathan Vos Post, Aug 30 2011

Keywords

Comments

a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 5*p(k+1), see example. - Joerg Arndt, Dec 18 2012
Row 4 of Table 1 of Elsholtz, row 1 being A002572, row 2 being A176485, and row 3 being A176503.

Examples

			From _Joerg Arndt_, Dec 18 2012: (Start)
There are a(6+1)=16 compositions 6=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 5*p(k+1):
[ 1]  [ 1 1 1 1 1 1 ]
[ 2]  [ 1 1 1 1 2 ]
[ 3]  [ 1 1 1 2 1 ]
[ 4]  [ 1 1 1 3 ]
[ 5]  [ 1 1 2 1 1 ]
[ 6]  [ 1 1 2 2 ]
[ 7]  [ 1 1 3 1 ]
[ 8]  [ 1 1 4 ]
[ 9]  [ 1 2 1 1 1 ]
[10]  [ 1 2 1 2 ]
[11]  [ 1 2 2 1 ]
[12]  [ 1 2 3 ]
[13]  [ 1 3 1 1 ]
[14]  [ 1 3 2 ]
[15]  [ 1 4 1 ]
[16]  [ 1 5 ]
(End)
		

Crossrefs

Programs

  • Mathematica
    b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n - j, k (r - j), k], {j, 0, Min[n, r]}]]];
    a[n_] := b[4n - 3, 1, 5];
    Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
  • PARI
    /* see A002572, set t=5 */

Formula

a(n) = A294775(n-1,4). - Alois P. Heinz, Nov 08 2017

Extensions

Terms beyond a(20)=113904 added by Joerg Arndt, Dec 18 2012
Invalid empirical g.f. removed by Alois P. Heinz, Nov 08 2017

A194629 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 32, 63, 125, 249, 496, 988, 1968, 3920, 7808, 15552, 30978, 61705, 122910, 244824, 487664, 971376, 1934880, 3854082, 7676935, 15291665, 30459424, 60672040, 120852464, 240725680, 479500802, 955116293, 1902493446, 3789571321, 7548436410
Offset: 1

Views

Author

Jonathan Vos Post, Aug 30 2011

Keywords

Comments

a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 6*p(k+1). - Joerg Arndt, Dec 18 2012
Row 5 of Table 1 of Elsholtz, row 1 being A002572, row 2 being A176485, row 3 being A176503, and row 4 being A194628.

Crossrefs

Programs

  • Mathematica
    b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n - j, k (r - j), k], {j, 0, Min[n, r]}]]];
    a[n_] := b[5n-4, 1, 6];
    Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
  • PARI
    /* see A002572, set t=6 */

Formula

a(n) = A294775(n-1,5). - Alois P. Heinz, Nov 08 2017

Extensions

Terms beyond a(20)=122910 added by Joerg Arndt, Dec 18 2012
Invalid empirical g.f. removed by Alois P. Heinz, Nov 08 2017

A194630 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 505, 1008, 2012, 4016, 8016, 16000, 31936, 63744, 127234, 253961, 506910, 1011800, 2019568, 4031088, 8046112, 16060160, 32056322, 63984903, 127714833, 254920736, 508825640, 1015623664, 2027200176, 4046322176, 8076520194
Offset: 1

Views

Author

Jonathan Vos Post, Aug 30 2011

Keywords

Comments

a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 7*p(k+1). - Joerg Arndt, Dec 18 2012
Row 6 of Table 1 of Elsholtz, row 1 being A002572, row 2 being A176485, row 3 being A176503, row 4 being A194628, and row 5 being A194629.

Crossrefs

Programs

  • Mathematica
    b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]];
    a[n_] := b[6n-5, 1, 7];
    Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
  • PARI
    /* see A002572, set t=7 */

Formula

a(n) = A294775(n-1,6). - Alois P. Heinz, Nov 08 2017

Extensions

Terms beyond a(20)=127234 added by Joerg Arndt, Dec 18 2012

A194631 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1017, 2032, 4060, 8112, 16208, 32384, 64704, 129280, 258304, 516098, 1031177, 2060318, 4116568, 8225008, 16433776, 32835104, 65605376, 131081216, 261903618, 523290119, 1045547025, 2089029664, 4173934632, 8339628016
Offset: 1

Views

Author

Jonathan Vos Post, Aug 30 2011

Keywords

Comments

a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 8*p(k+1). - Joerg Arndt, Dec 18 2012
Row 7 of Table 1 of Elsholtz, row 1 being A002572, row 2 being A176485, row 3 being A176503, row 4 being A194628, row 5 being A194629, and row 6 being A194630.

Crossrefs

Programs

  • Mathematica
    b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]];
    a[n_] := b[7n-6, 1, 8];
    Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
  • PARI
    /* see A002572, set t=8 */

Formula

a(n) = A294775(n-1,7). - Alois P. Heinz, Nov 08 2017

Extensions

Terms beyond a(20)=129280 added by Joerg Arndt, Dec 18 2012

A194633 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2045, 4089, 8176, 16348, 32688, 65360, 130688, 261312, 522496, 1044736, 2088960, 4176896, 8351746, 16699401, 33390622, 66764888, 133497072, 266928752, 533726752, 1067192064, 2133861376, 4266677504, 8531265024
Offset: 1

Views

Author

Jonathan Vos Post, Aug 30 2011

Keywords

Comments

a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 10*p(k+1). [Joerg Arndt, Dec 18 2012]
Row 9 of Table 1 of Elsholtz, row 1 being A002572, row 2 being A176485, row 3 being A176503, row 4 being A194628, row 5 being A194629, row 6 being A194630, row 7 being A194631, and row 8 being A194632.

Crossrefs

Programs

  • Mathematica
    b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]];
    a[n_] := b[9n-8, 1, 10];
    Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
  • PARI
    /* see A002572, set t=10 */

Formula

a(n) = A294775(n-1,9).

Extensions

Added terms beyond a(20)=130688, Joerg Arndt, Dec 18 2012
Invalid empirical g.f. removed by Alois P. Heinz, Nov 08 2017

A176463 Irregular triangle read by rows: T(n,k) = number of Huffman-equivalence classes of ternary trees with 3n+1 leaves and 4k leaves on the bottom level (n>=1, k>=1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 4, 2, 1, 15, 8, 4, 2, 29, 15, 8, 4, 1, 57, 29, 15, 8, 2, 1, 112, 57, 29, 15, 4, 2, 1, 220, 112, 57, 29, 7, 4, 2
Offset: 1

Views

Author

N. J. A. Sloane, Dec 07 2010

Keywords

Examples

			Triangle begins:
1
1
1 1
2 1 1
4 2 1 1
8 4 2 1
15 8 4 2
29 15 8 4 1
57 29 15 8 2 1
112 57 29 15 4 2 1
220 112 57 29 7 4 2
		

Crossrefs

Cf. A176431, A176452, A194628 - A194633. Leading column gives A176503.

A194632 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2041, 4080, 8156, 16304, 32592, 65152, 130240, 260352, 520448, 1040384, 2079746, 4157449, 8310814, 16613464, 33210608, 66388592, 132711968, 265293568, 530326528, 1060132096, 2119222786, 4236363783, 8468566033
Offset: 1

Views

Author

Jonathan Vos Post, Aug 30 2011

Keywords

Comments

a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 9*p(k+1). - Joerg Arndt, Dec 18 2012
Row 8 of Table 1 of Elsholtz, row 1 being A002572, row 2 being A176485, row 3 being A176503, row 4 being A194628, row 5 being A194629, row 6 being A194630, and row 7 being A194631.

Crossrefs

Programs

  • Mathematica
    b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]];
    a[n_] := b[8n-7, 1, 9];
    Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
  • PARI
    /* see A002572, set t=9 */

Formula

a(n) = A294775(n-1,8). - Alois P. Heinz, Nov 08 2017

Extensions

Terms beyond a(20)=130240 added by Joerg Arndt, Dec 18 2012
Showing 1-10 of 10 results.