cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A100182 Structured tetragonal anti-prism numbers.

Original entry on oeis.org

1, 8, 28, 68, 135, 236, 378, 568, 813, 1120, 1496, 1948, 2483, 3108, 3830, 4656, 5593, 6648, 7828, 9140, 10591, 12188, 13938, 15848, 17925, 20176, 22608, 25228, 28043, 31060, 34286, 37728, 41393, 45288, 49420, 53796, 58423, 63308, 68458, 73880, 79581, 85568, 91848, 98428, 105315, 112516
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Comments

If offset is changed to 0, this is the number of magic labelings of the 5-node, 8-edge graph formed from a square with both diagonals drawn and a node at the center [Stanley]. - N. J. A. Sloane, Jul 07 2014

Crossrefs

Cf. A100185 - structured anti-prisms; A100145 for more on structured numbers.

Programs

  • Magma
    [(1/6)*(7*n^3-3*n^2+2*n): n in [1..40]]; // Vincenzo Librandi, Aug 18 2011
    
  • Mathematica
    Table[(7*n^3 - 3*n^2 + 2*n)/6, {n,1,40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 8, 28, 68}, 40] (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    vector(40, n, (7*n^3 -3*n^2 +2*n)/6) \\ G. C. Greubel, Nov 08 2018

Formula

a(n) = (1/6)*(7*n^3 - 3*n^2 + 2*n). [Corrected by Luca Colucci, Mar 01 2011]
G.f.: x*(1 + 4*x + 2*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
E.g.f.: (6*x +18*x^2 +7*x^3)*exp(x)/6. - G. C. Greubel, Nov 08 2018
a(n) = binomial(n,3) + n^3. - Pedro Caceres, Jul 28 2019

A108675 a(n) = (n+1)*(n+2)*(61*n^4 + 366*n^3 + 845*n^2 + 888*n + 360)/720.

Original entry on oeis.org

1, 21, 157, 707, 2353, 6405, 15106, 31998, 62349, 113641, 196119, 323401, 513149, 787801, 1175364, 1710268, 2434281, 3397485, 4659313, 6289647, 8369977, 10994621, 14272006, 18326010, 23297365, 29345121, 36648171, 45406837
Offset: 0

Views

Author

Emeric Deutsch, Jun 17 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.

References

  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 231, # 35).

Programs

  • Maple
    a:=n->(n+1)*(n+2)*(61*n^4+366*n^3+845*n^2+888*n+360)/720: seq(a(n),n=0..32);

Formula

G.f.: (1 + 14*x + 31*x^2 + 14*x^3 + x^4)/(1-x)^7.

A244864 a(n) = binomial(n+5,5) + 4*binomial(n+4,5) + 4*binomial(n+3,5) + binomial(n+2,5).

Original entry on oeis.org

1, 10, 49, 165, 440, 1001, 2030, 3774, 6555, 10780, 16951, 25675, 37674, 53795, 75020, 102476, 137445, 181374, 235885, 302785, 384076, 481965, 598874, 737450, 900575, 1091376, 1313235, 1569799, 1864990, 2203015, 2588376, 3025880, 3520649, 4078130, 4704105, 5404701, 6186400, 7056049
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2014

Keywords

Programs

  • Maple
    a:= n-> (2*n+3)*(n+2)*(n+1)*(n^2+3*n+4)/24:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 11 2014
  • Mathematica
    Table[Binomial[n+5,5]+4*Binomial[n+4,5]+4*Binomial[n+3,5]+ Binomial[ n+2,5],{n,0,40}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,10,49,165,440,1001},40] (* Harvey P. Dale, Nov 13 2014 *)
    a[n_] := (2 n^5 + 15 n^4 + 48 n^3 + 81 n^2 + 70 n + 24)/  24; Array[a, 40, 0] (* or *)
    CoefficientList[Series[(x^3 + 4 x^2 + 4 x + 1)/(x - 1)^6, {x, 0, 40}], x] (* Robert G. Wilson v, Feb 26 2015 *)
  • PARI
    a(n)=(2*n+3)*(n+2)*(n+1)*(n^2+3*n+4)/24 \\ Charles R Greathouse IV, Oct 21 2022

Formula

G.f.: (x+1)*(x^2+3*x+1)/(x-1)^6; a(n) = (2*n+3)*(n+2)*(n+1)*(n^2+3*n+4)/24. - Alois P. Heinz, Jul 11 2014
a(n) = Sum_{k=A000292(n)..A000292(n+1)} k. - J. M. Bergot, Feb 25 2015

A244865 Number of 3 X 3 symmetric matrices with row and column sums <= n.

Original entry on oeis.org

1, 14, 85, 336, 1023, 2610, 5860, 11942, 22555, 40068, 67677, 109578, 171157, 259196, 382096, 550116, 775629, 1073394, 1460845, 1958396, 2589763, 3382302, 4367364, 5580666, 7062679, 8859032, 11020933, 13605606, 16676745, 20304984, 24568384, 29552936, 35353081, 42072246, 49823397, 58729608
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2014

Keywords

Comments

a(n) is the number of perimeter-magic hollow triangles of order 4 (4 elements per edge, 9 elements in total) with magic edge sum n+4. The triangles have 9 elements >=1, not necessarily distinct. Triangles obtained by rotations and flips (D_6 symmetry) are counted as being distinct. Associated triangles of order 3 are counted in A019298. - R. J. Mathar, Mar 05 2025

Programs

  • PARI
    Vec((1 + 8*x + 15*x^2 + 8*x^3 + x^4) / ((1 - x)^7*(1 + x)) + O(x^40)) \\ Colin Barker, Jan 11 2017

Formula

G.f.: (1 + 8*x + 15*x^2 + 8*x^3 + x^4) / ((1 - x)^7*(1 + x)).
From Colin Barker, Jan 11 2017: (Start)
a(n) = (15*(127+(-1)^n) + 6432*n + 8936*n^2 + 6480*n^3 + 2570*n^4 + 528*n^5 + 44*n^6) / 1920.
a(n) = 6*a(n-1) - 14*a(n-2) + 14*a(n-3) - 14*a(n-5) + 14*a(n-6) - 6*a(n-7) + a(n-8) for n>7.
(End)

A244868 Number of symmetric 5 X 5 matrices of nonnegative integers with zeros on the main diagonal and every row and column adding to n.

Original entry on oeis.org

1, 22, 158, 654, 1980, 4906, 10577, 20588, 37059, 62710, 100936, 155882, 232518, 336714, 475315, 656216, 888437, 1182198, 1548994, 2001670, 2554496, 3223242, 4025253, 4979524, 6106775, 7429526, 8972172, 10761058, 12824554, 15193130, 17899431, 20978352, 24467113, 28405334, 32835110, 37801086
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2014

Keywords

Crossrefs

Even bisection of row n=5 of A333351.
Cf. A053494.

Programs

  • PARI
    Vec((1 + 16*x + 41*x^2 + 16*x^3 + x^4) / (1 - x)^6 + O(x^40)) \\ Colin Barker, Jan 11 2017

Formula

G.f.: (1 + 16*x + 41*x^2 + 16*x^3 + x^4) / (1 - x)^6.
From Colin Barker, Jan 11 2017: (Start)
a(n) = (24 + 94*n + 165*n^2 + 155*n^3 + 75*n^4 + 15*n^5) / 24.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)

A244870 Number of magic labelings with magic sum n of 2nd graph shown in link.

Original entry on oeis.org

1, 8, 37, 121, 318, 717, 1446, 2678, 4639, 7614, 11955, 18087, 26516, 37835, 52732, 71996, 96525, 127332, 165553, 212453, 269434, 338041, 419970, 517074, 631371, 765050, 920479, 1100211, 1306992, 1543767, 1813688, 2120120, 2466649, 2857088, 3295485
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[7 n^5/120 + 7 n^4/16 + 35 n^3/24 + 21 n^2/8 + 149 n/60 + (-1)^n/32 + 31/32, {n, 0, 40}] (* Bruno Berselli, Jul 08 2014 *)

Formula

G.f.: (1 + 3*x + 6*x^2 + 3*x^3 + x^4)/((1 - x)^6*(1 + x)).
a(n) = 7*n^5/120 + 7*n^4/16 + 35*n^3/24 + 21*n^2/8 + 149*n/60 + (-1)^n/32 + 31/32. [Bruno Berselli, Jul 08 2014]

A244871 Number of magic labelings with magic sum n of 3rd graph shown in link.

Original entry on oeis.org

1, 10, 55, 217, 672, 1755, 4030, 8386, 16135, 29140, 49941, 81915, 129430, 198037, 294652, 427780, 607725, 846846, 1159795, 1563805, 2078956, 2728495, 3539130, 4541382, 5769907, 7263880, 9067345, 11229631, 13805730, 16856745, 20450296, 24661000, 29570905
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n^6/48 + 3 n^5/16 + 77 n^4/96 + 2 n^3 + 37 n^2/12 - n (-1)^n/32 + 89 n/32 - 3 (-1)^n/64 + 67/64, {n,0,40}] (* Bruno Berselli, Jul 08 2014 *)

Formula

G.f.: (1+5*x+13*x^2+22*x^3+13*x^4+5*x^5+x^6)/((1-x)^7*(1+x)^2).
a(n) = n^6/48 + 3*n^5/16 + 77*n^4/96 + 2*n^3 + 37*n^2/12 - n*(-1)^n/32 + 89*n/32 - 3*(-1)^n/64 + 67/64. [Bruno Berselli, Jul 08 2014]

A244872 Number of magic labelings with magic sum n of 4th graph shown in link.

Original entry on oeis.org

1, 15, 114, 569, 2138, 6562, 17329, 40765, 87512, 174452, 327137, 582784, 993895, 1632561, 2595510, 4009958, 6040323, 8895861, 12839284, 18196419, 25366968, 34836428, 47189231, 63123163, 83465122, 109188274, 141430667, 181515362, 230972141, 291560851, 365296444
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[17 n^7/1440 + 119 n^6/960 + 28 n^5/45 + 721 n^4/384 + 5243 n^3/1440 + 721 n^2/160 + 129 n/40 + (-1)^n/256 + 255/256, {n, 0, 30}]
    LinearRecurrence[{7,-20,28,-14,-14,28,-20,7,-1},{1,15,114,569,2138,6562,17329,40765,87512},40] (* Harvey P. Dale, Nov 01 2021 *)

Formula

G.f.: (1+8*x+29*x^2+43*x^3+29*x^4+8*x^5+x^6)/((1-x)^8*(1+x)).
a(n) = 17*n^7/1440 + 119*n^6/960 + 28*n^5/45 + 721*n^4/384 + 5243*n^3/1440 + 721*n^2/160 + 129*n/40 + (-1)^n/256 + 255/256. [Bruno Berselli, Jul 08 2014]

A244874 Number of magic labelings with magic sum n of 6th graph shown in link.

Original entry on oeis.org

1, 17, 137, 707, 2709, 8417, 22408, 53008, 114251, 228431, 429325, 766167, 1308451, 2151643, 3423880, 5293736, 7979133, 11757477, 16977097, 24070067, 33566489, 46110317, 62476800, 83591624, 110551831, 144648595, 187391933, 240537431, 306115063, 386460183, 484246768
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7,-20,28,-14,-14,28,-20,7,-1},{1,17,137,707,2709,8417,22408,53008,114251},40] (* Harvey P. Dale, Jun 30 2022 *)
  • PARI
    Vec((1 + 10*x + 38*x^2 + 60*x^3 + 38*x^4 + 10*x^5 + x^6) / ((1 - x)^8*(1 + x)) + O(x^40)) \\ Colin Barker, Jan 11 2017

Formula

G.f.: (1 + 10*x + 38*x^2 + 60*x^3 + 38*x^4 + 10*x^5 + x^6) / ((1 - x)^8*(1 + x)).
a(n) = (-315*(-129+(-1)^n) + 138528*n + 202104*n^2 + 171248*n^3 + 93030*n^4 + 32312*n^5 + 6636*n^6 + 632*n^7) / 40320. - Colin Barker, Jan 11 2017

A244875 Number of magic labelings with magic sum n of 7th graph shown in link.

Original entry on oeis.org

1, 21, 179, 938, 3612, 11242, 29947, 70855, 152720, 305330, 573812, 1023939, 1748545, 2875153, 4574922, 7073018, 10660515, 15707931, 22680505, 32155320, 44840378, 61595732, 83456781, 111659833, 147670042, 193211824, 250301858, 321284777, 408871655, 516181395
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Crossrefs

Programs

  • PARI
    Vec((1 + 14*x + 52*x^2 + 77*x^3 + 52*x^4 + 14*x^5 + x^6) / ((1 - x)^8*(1 + x)) + O(x^40)) \\ Colin Barker, Jan 11 2017

Formula

G.f.: (1 + 14*x + 52*x^2 + 77*x^3 + 52*x^4 + 14*x^5 + x^6) / ((1 - x)^8*(1 + x)).
a(n) = (315*(255+(-1)^n) + 306144*n + 498456*n^2 + 452312*n^3 + 250530*n^4 + 86576*n^5 + 17724*n^6 + 1688*n^7) / 80640. - Colin Barker, Jan 11 2017
Previous Showing 21-30 of 40 results. Next