cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A082036 a(n) = (9*n^2+3*n+1) * n!.

Original entry on oeis.org

1, 13, 86, 546, 3768, 28920, 246960, 2333520, 24232320, 274700160, 3378412800, 44826566400, 638509132800, 9720379468800, 157531172198400, 2708193616128000, 49231324606464000, 943638746738688000
Offset: 0

Views

Author

Paul Barry, Apr 02 2003

Keywords

Comments

A row of the number array A082038.

Crossrefs

Cf. A082035.

Formula

a(n) = 9*A002775(n) + 3*A001563(n) + n!.

Extensions

Definition and formula corrected by Neven Juric, Jul 01 2008

A367731 Decimal expansion of Sum_{k>=1} 1 / (k^2 * k!).

Original entry on oeis.org

1, 1, 4, 6, 4, 9, 9, 0, 7, 2, 5, 2, 8, 6, 4, 2, 8, 0, 7, 9, 0, 1, 1, 9, 5, 2, 0, 2, 4, 6, 4, 7, 1, 8, 6, 8, 8, 6, 1, 9, 2, 9, 1, 7, 7, 3, 3, 8, 8, 1, 0, 9, 4, 7, 0, 4, 3, 0, 3, 5, 3, 2, 6, 5, 1, 0, 9, 0, 1, 5, 8, 4, 3, 6, 9, 6, 4, 7, 7, 1, 4, 2, 0, 8, 8, 7, 3, 6, 4, 6, 8, 6, 6, 7, 1, 0, 0, 1, 6, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 28 2023

Keywords

Examples

			1.1464990725286428079011952024647...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, 1], 10, 100][[1]]
  • PARI
    intnum(x=0,1,exp(x)*log(x)^2)/2 \\ Hugo Pfoertner, Feb 12 2024

Formula

From Peter Bala, Feb 10 2024: (Start)
Equals (1/2)*Integral_{x = 0..1} exp(x)*log(x)^2 dx.
Equals the triple integral Integral_{z = 0..1} Integral_{y = 0..1} Integral_{x = 0..1} exp(x*y*z) dx dy dz. (End)

A367732 Decimal expansion of Sum_{k>=1} (-1)^(k+1) / (k^2 * k!).

Original entry on oeis.org

8, 9, 1, 2, 1, 2, 7, 9, 8, 1, 1, 1, 3, 0, 2, 3, 7, 6, 0, 6, 9, 8, 5, 7, 8, 6, 2, 4, 5, 5, 3, 5, 4, 6, 2, 5, 1, 6, 9, 6, 0, 1, 2, 5, 1, 1, 9, 7, 9, 4, 8, 3, 2, 4, 8, 6, 8, 7, 7, 4, 5, 4, 1, 2, 3, 1, 6, 6, 5, 2, 5, 5, 7, 8, 8, 0, 6, 9, 7, 2, 2, 8, 7, 3, 7, 5, 0, 0, 3, 5, 7, 0, 7, 1, 8, 2, 2, 5, 1, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2023

Keywords

Examples

			0.89121279811130237606985786245535...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, -1], 10, 100][[1]]

A343276 a(n) = n! * [x^n] -x*(x + 1)*exp(x)/(x - 1)^3.

Original entry on oeis.org

0, 1, 10, 81, 652, 5545, 50886, 506905, 5480056, 64116657, 808856290, 10959016321, 158851484100, 2454385635481, 40285778016862, 700261611998985, 12853532939027056, 248482678808005345, 5047002269952482106, 107466341437781300017, 2394019421567804960380
Offset: 0

Views

Author

Peter Luschny, Apr 20 2021

Keywords

Crossrefs

Programs

  • Maple
    egf := -x*(x + 1)*exp(x)/(x - 1)^3: ser := series(egf, x, 32):
    seq(n!*coeff(ser, x, n), n = 0..20);
  • Mathematica
    a[n_] := Sum[Pochhammer[n - k + 1, k]*k^2, {k, 0, n}];
    Table[a[n], {n, 0, 20}]
  • Python
    def a():
        a, b, n = 0, 1, 2
        yield 0
        while True:
            yield b
            a, b = b, -(n + 1)*a + ((2 + n*(n + 2))*b)//(n - 1)
            n += 1
    A343276 = a(); print([next(A343276) for _ in range(21)])
  • SageMath
    def a(n): return sum(rising_factorial(n - k + 1, k)*k^2 for k in (0..n))
    print([a(n) for n in (0..20)])
    

Formula

a(n) = Sum_{k=0..n} rf(n - k + 1, k)*k^2, where rf is the rising factorial.
a(n) = (2 + n*(n + 2))*a(n - 1)/(n - 1) - (n + 1)*a(n - 2) for n >= 3.
A002775(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*a(k).
a(n) = Sum_{k=1..n} k^2*k!*binomial(n,k). - Ridouane Oudra, Jun 15 2025
Previous Showing 11-14 of 14 results.