A219010 Numerators in a product expansion for sqrt(5).
3, 123, 28143753123, 17656721319717734662791328845675730903632844218828123
Offset: 0
Examples
The first three terms of the product give 51 correct decimal places of sqrt(5): (1 + 2*3/5)*(1 + 2*123/15005)*(1 + 2*28143753123/792070839820228500005) = 2.23606 79774 99789 69640 91736 68731 27623 54406 18359 61152 5(4...).
Links
- Amiram Eldar, Table of n, a(n) for n = 0..4
Programs
-
Mathematica
Table[(1 + 5*(Fibonacci[5^n] Fibonacci[5^n + 1] + Fibonacci[5^n - 1]^2))/2, {n, 0, 3}] (* or *) Table[LucasL[2*5^n], {n, 0, 3}] (* Michael De Vlieger, Jul 30 2017 *)
-
Maxima
A219010(n):=1/2*(1 + 5*(fib(5^n)*fib(5^n+1)+(fib(5^n - 1))^2))$ makelist(A219010(n),n,0,3); /* Martin Ettl, Nov 12 2012 */
Formula
Let tau = (3 + sqrt(5))/2. Then a(n) = tau^(5^n) + 1/tau^(5^n).
a(n) = (1/2)*(1 + 5*(Fibonacci(5^n)*Fibonacci(5^n + 1) + (Fibonacci(5^n - 1))^2)).
Recurrence equation: a(n+1) = a(n)^5 - 5*a(n)^3 + 5*a(n) with initial condition a(0) = 3.
a(n) = Lucas(2*5^n). - Ehren Metcalfe, Jul 29 2017
Comments