A006714
Number of trivalent bipartite labeled graphs with 2n labeled nodes.
Original entry on oeis.org
10, 840, 257040, 137260200, 118273755600, 154712104747200, 292311804557572800, 766931112143320924800, 2706462791802644002128000, 12512595130808078973370704000, 74130965352250071944327288640000, 552334353713465817349513210512960000, 5092566798555894395129552704613028960000
Offset: 3
- R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
(* b stands for A001501 *) b[n_] := n!^2 Sum[2^(2k-n) 3^(k-n) (3(n-k))! HypergeometricPFQ[{k-n, k-n}, {3(k-n)/2, 1/2 + 3(k-n)/2}, -9/2]/(k! (n-k)!^2), {k, 0, n}]/6^n;
(* c stands for A246599 *) c[n_] := c[n] = Binomial[2n-1, n] b[n] - Sum[ Binomial[2n-1, 2k] Binomial[2k, k] b[k] c[n-k], {k, 1, n-1}];
a[n_] := a[n] = c[n] + Sum[Binomial[2n-1, 2k-1] c[k] a[n-k], {k, 1, n-1}];
Table[a[n], {n, 3, 20}] (* Jean-François Alcover, Jul 07 2018, after Andrew Howroyd *)
-
\\ here b(n) is A001501
b(n) = {n!^2 * sum(j=0, n, sum(i=0, n-j, my(k=n-i-j); (j + 3*k)! / (3^i * 36^k * i! * k!^2)) / (j! * (-2)^j))}
seq(n)={my(v=vector(n,n,b(n)*binomial(2*n-1,n)), u=vector(n), s=vector(n)); for(n=1, #u, u[n]=v[n] - sum(k=3, n-3, 2*binomial(2*n-1,2*k)*v[k]*u[n-k]); s[n]=u[n] + sum(k=3, n-3, binomial(2*n-1,2*k-1)*u[k]*s[n-k])); s[3..n]} \\ Andrew Howroyd, May 22 2018
a(7)-a(8) corrected and a(9)-a(12) computed with nauty by
Sean A. Irvine, Jun 27 2017
A246599
Number of connected trivalent bipartite labeled graphs with 2n labeled nodes.
Original entry on oeis.org
10, 840, 257040, 137214000, 118248530400, 154686980448000, 292276881344448000, 766864651478365440000, 2706292794907249067520000, 12512021073989410699165440000, 74128448237031250090060032000000, 552320243355746711191770103680000000, 5092467146398443040845772685937408000000
Offset: 3
- R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
-
b[n_] := n!^2*Sum[2^(2k-n) 3^(k-n)(3(n-k))!*HypergeometricPFQ[{k-n, k-n}, {3(k-n)/2, 1/2 + 3(k-n)/2}, -9/2]/(k! (n-k )!^2), {k, 0, n}]/6^n;
a[n_] := a[n] = Binomial[2n-1, n] b[n] - Sum[Binomial[2n-1, 2k] Binomial[2 k, k] b[k] a[n-k], {k, 1, n-1}];
Table[a[n], {n, 3, 20}] (* Jean-François Alcover, Jul 07 2018, after Andrew Howroyd *)
-
\\ here b(n) is A001501
b(n) = {n!^2 * sum(j=0, n, sum(i=0, n-j, my(k=n-i-j); (j + 3*k)! / (3^i * 36^k * i! * k!^2)) / (j! * (-2)^j))}
seq(n)={my(v=vector(n, n, b(n)*binomial(2*n, n)), u=vector(n)); for(n=1, #u, u[n]=v[n] - sum(k=3, n-3, binomial(2*n-1,2*k)*v[k]*u[n-k])); u[3..n]/2} \\ Andrew Howroyd, May 22 2018
a(7)-a(8) corrected and a(9)-a(12) computed with nauty by
Sean A. Irvine, Jun 27 2017
A246970
Number of connected bicubical multigraphs on 2n labeled nodes of two colors.
Original entry on oeis.org
1, 2, 31, 1272, 105720
Offset: 1
- R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
Original entry on oeis.org
1, 4, 55, 2008, 153040, 20987840, 4672874360
Offset: 1
- R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
Original entry on oeis.org
1, 2, 31, 1272, 105720, 15492600, 3621844800
Offset: 1
- R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 195
Original entry on oeis.org
6, 480, 197820, 154103040, 215643443400
Offset: 2
- R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Original entry on oeis.org
6, 480, 196560, 153498240, 214951968000
Offset: 2
- R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Original entry on oeis.org
1, 2, 4, 7, 39, 202, 1219, 9468, 83435, 80017
Offset: 3
- R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
A246602
Number of connected bicubical graphs on 2n labeled nodes of two colors.
Original entry on oeis.org
1, 24, 2040, 297000, 68922000, 24038380800
Offset: 3
- R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
Comments