cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A228184 Numbers k such that k^2 + k + 41 is semiprime.

Original entry on oeis.org

40, 41, 44, 49, 56, 65, 76, 81, 82, 84, 87, 89, 91, 96, 102, 104, 109, 117, 121, 122, 123, 126, 127, 130, 136, 138, 140, 143, 147, 155, 159, 161, 162, 163, 164, 170, 172, 173, 178, 184, 185, 186, 187, 190, 201, 204, 205, 207, 208, 209, 213, 215, 216, 217, 218
Offset: 1

Views

Author

Shyam Sunder Gupta, Aug 15 2013

Keywords

Comments

Subsequence of A007634. Numbers in A007634 but not in here are 420, 431, 491, 492, 514, 533, 573, etc. (A097822). - R. J. Mathar, Aug 17 2013

Examples

			a(3) = 44 is in the sequence because 44^2 + 44 + 41 = 43*47 is semiprime.
		

Crossrefs

Programs

  • Mathematica
    a = {}; Do[
    If[PrimeOmega[x^2 + x + 41] == 2, AppendTo[a, x]], {x, 1, 500}]; a

A319906 Number of prime numbers of the form k^2 + k + 41 below 10^n.

Original entry on oeis.org

0, 8, 31, 86, 221, 581, 1503, 4149, 11355, 31985, 90940, 261081, 756081, 2208197, 6483148, 19132652, 56714624, 168806741, 504209234
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2018

Keywords

Examples

			The first 8 values of k^2 + k + 41 for k = 0 to 7 are above 10 and below 100: 41, 43, 47, 53, 61, 71, 83, 97, thus a(1) = 0 and a(2) = 8.
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.

Crossrefs

Programs

  • Mathematica
    f[n_] := n^2 + n + 41; c = 0; k = 0; a={}; Do[f1 = f[k]; While[f1 < 10^n, If[PrimeQ[f1], c++]; k++; f1 = f[k]];  AppendTo[a, c], {n, 1, 10}]; a

Formula

According to Hardy and Littlewood's Conjecture F: a(n) ~ 2 * C * 10^(n/2)/(n*log(10)), where C = 3.319773... (Hardy-Littlewood constant for x^2+x+41, A221712).

A141489 Numbers k such that k^2 + k + 257 is prime.

Original entry on oeis.org

0, 2, 3, 4, 7, 9, 10, 11, 13, 14, 17, 18, 20, 21, 23, 24, 25, 27, 28, 30, 31, 34, 37, 41, 42, 44, 48, 49, 51, 53, 56, 59, 60, 63, 65, 66, 67, 69, 70, 73, 74, 77, 79, 80, 81, 83, 88, 90, 91, 93, 94, 95, 100, 101, 104, 107, 111, 114, 115, 116, 119, 122, 125, 129, 135, 137
Offset: 1

Views

Author

Parthasarathy Nambi, Aug 09 2008

Keywords

Examples

			If k=0, then k^2 + k + 257 = 257 (prime).
If k=100, then k^2 + k + 257 = 10357 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in [0..5000] |IsPrime(n^2+n+257)]; // Vincenzo Librandi, Nov 25 2010
    
  • Mathematica
    Select[Range[0,200],PrimeQ[#^2+#+257]&] (* Harvey P. Dale, Jun 07 2016 *)
  • PARI
    isok(n) = isprime(n^2+n+257); \\ Michel Marcus, Mar 12 2017

Extensions

More terms from Vincenzo Librandi, Mar 25 2010

A250394 Numbers k such that 56211383760397 + 44546738095860*k is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 27, 40, 64, 72, 73, 74, 80, 82, 86, 90, 91, 92, 93, 94, 98, 105, 109, 114, 123, 124, 136, 137, 146, 153, 156, 158, 159, 160, 166, 183, 185, 186, 194, 199, 204, 213, 216, 217, 228
Offset: 1

Views

Author

Vincenzo Librandi, Nov 21 2014

Keywords

Comments

Terms up to 22 are consecutive. Arithmetic progression found in 2004 by Markus Frind, Paul Underwood, and Paul Jobling (see Green and Tao, 2008).

Crossrefs

Programs

  • Magma
    [n: n in [0..300] | IsPrime(56211383760397+44546738095860*n)];
    
  • Mathematica
    Select[Range[0, 300], PrimeQ[56211383760397 + 44546738095860 #]&]
  • PARI
    is(n)=isprime(56211383760397+44546738095860*n) \\ Charles R Greathouse IV, Jun 13 2017

A250395 Numbers k such that 11410337850553 + 4609098694200*k is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 26, 30, 31, 41, 43, 50, 57, 61, 69, 75, 88, 90, 98, 99, 101, 108, 116, 127, 128, 131, 132, 133, 146, 154, 156, 159, 160, 162, 164, 165, 171, 172, 182, 183, 188, 191, 193, 194, 197
Offset: 1

Views

Author

Vincenzo Librandi, Nov 21 2014

Keywords

Comments

Terms up to 21 are consecutive. Arithmetic progression found by Pritchard et al. (1995).

Crossrefs

Programs

  • Magma
    [n: n in [0..200] | IsPrime(11410337850553+4609098694200*n)];
    
  • Mathematica
    Select[Range[0, 300], PrimeQ[11410337850553 + 4609098694200 #] &]
  • PARI
    is(n)=isprime(11410337850553+4609098694200*n) \\ Charles R Greathouse IV, Jun 13 2017

A260678 Numbers n>0 for which n+(17-n)^2 is not prime.

Original entry on oeis.org

33, 34, 37, 42, 49, 50, 51, 53, 56, 58, 60, 65, 67, 68, 69, 71, 72, 75, 78, 82, 83, 84, 85, 86, 88, 91, 94, 95, 97, 100, 101, 102, 105, 106, 107, 110, 111, 113, 114, 116, 117, 118, 119, 122, 123, 124, 128, 129, 132, 133, 134, 135, 136, 139, 141, 143, 148, 151, 152, 153
Offset: 1

Views

Author

M. F. Hasler, Nov 15 2015

Keywords

Comments

Motivated by the fact that n+(17-n)^2 = 1+16^2, 2+15^2, ..., 16+1^2, 17+0^2, 18+1^2, 19+2^2, ..., 32+15^2 are all prime. This has an explanation through Heegener numbers, similar to Euler's prime-generating polynomial, cf. A002837 and related crossrefs.

Crossrefs

Cf. A260679 (n+(17-n)^2), A007635 (primes in that sequence = primes of the form n^2+n+17).
Cf. A002837 (n^2-n+41 is prime), A005846 (primes of form n^2+n+41), A007634 (n^2+n+41 is composite), A097823 (n^2+n+41 is not squarefree).

Programs

  • Magma
    [n: n in [1..180] | not IsPrime(n+(17-n)^2)]; // Vincenzo Librandi, Nov 16 2015
  • Maple
    remove(t -> isprime(t+(17-t)^2), [$1..200]); # Robert Israel, May 02 2017
  • Mathematica
    Select[Range[200], !PrimeQ[# + (17 - #)^2] &] (* Vincenzo Librandi, Nov 16 2015 *)
  • PARI
    for(n=1,999,isprime(n+(17-n)^2)||print1(n","))
    

A273597 min { x >= 0 | A273595(n) + prime(n)*x + x^2 is composite }, where A273595(n) is such that this is a local maximum.

Original entry on oeis.org

39, 38, 37, 35, 34, 32, 31, 29, 26, 25, 22, 20, 19, 17, 14, 12, 11, 12, 12, 12, 12, 16, 15, 12, 12, 13, 14, 13, 13, 14, 13, 13, 13, 13, 14, 14, 14, 16, 16, 16, 15, 15, 16, 16, 17
Offset: 2

Views

Author

M. F. Hasler, May 26 2016

Keywords

Comments

See A273595 for further information and (cross)references.
From the initial values, the sequence seems strictly decreasing, with a(n+1) - a(n) = (prime(n+1) - prime(n))/2; however, this property does not persist beyond n = 16.
This is the subsequence of A273770 with indices n corresponding to odd primes 2n+1, see formula. - M. F. Hasler, Feb 17 2020

Crossrefs

Programs

Formula

a(n) = (81 - prime(n))/2 for 1 < n < 17.
a(n) = A273770((prime(n) - 1)/2). - M. F. Hasler, Feb 17 2020

Extensions

Edited and extended using A273756(0..100) due to Don Reble, by M. F. Hasler, Feb 17 2020

A133157 Numbers k such that k^2 + k - 41 is prime.

Original entry on oeis.org

8, 15, 20, 21, 26, 29, 36, 45, 48, 59, 68, 69, 75, 78, 98, 99, 108, 111, 113, 120, 129, 134, 138, 140, 143, 161, 168, 185, 188, 189, 210, 213, 215, 216, 218, 224, 230, 231, 234, 251, 255, 260, 266, 273, 278, 279, 281, 290, 294, 299, 306, 308, 314, 320, 329, 356
Offset: 1

Views

Author

Parthasarathy Nambi, Dec 17 2007

Keywords

Examples

			If k=8, then k^2 + n - 41 = 31 (prime).
If k=99, then k^2 + n - 41 = 9859 (prime).
		

Crossrefs

Cf. A002837.

Programs

Extensions

More terms from Stefan Steinerberger, Dec 24 2007
More terms from R. J. Mathar, Jan 08 2008

A260679 a(n) = n + (17 - n)^2.

Original entry on oeis.org

257, 227, 199, 173, 149, 127, 107, 89, 73, 59, 47, 37, 29, 23, 19, 17, 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257, 289, 323, 359, 397, 437, 479, 523, 569, 617, 667, 719, 773, 829, 887, 947, 1009, 1073, 1139, 1207, 1277, 1349, 1423, 1499, 1577, 1657
Offset: 1

Views

Author

M. F. Hasler, Nov 15 2015

Keywords

Comments

Motivated by the fact that the first 32 terms of this sequence are primes. This has an explanation through Heegener numbers, similar to Euler's prime-generating polynomial (cf. A002837 and related crossrefs).
See also A007635 for the primes in this sequence, A260678 for indices k for which a(k) is composite.
Sequence provides all numbers m for which 4*m - 67 is a square. - Bruno Berselli, Nov 16 2015

Crossrefs

Cf. A007635 (primes in this sequence = primes of the form n^2 + n + 17).
Cf. A002837 (n^2 - n + 41 is prime), A005846 (primes of form n^2 + n + 41), A007634 (n^2 + n + 41 is composite), A097823 (n^2 + n + 41 is not squarefree).
Cf. A260678.

Programs

  • Magma
    [n+(17-n)^2: n in [1..70]]; // Vincenzo Librandi, Nov 16 2015
  • Mathematica
    Table[n + (17 - n)^2, {n, 70}] (* Vincenzo Librandi, Nov 16 2015 *)
    LinearRecurrence[{3,-3,1},{257,227,199},60] (* Harvey P. Dale, May 12 2019 *)
  • PARI
    for(n=1,99,print1(n+(17-n)^2,","))
    

Formula

G.f.: x*(257 - 544*x + 289*x^2)/(1 - x)^3.
From Elmo R. Oliveira, Feb 11 2025: (Start)
E.g.f.: exp(x)*(x^2 - 32*x + 289) - 289.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A284043 Starts of a run of at least n consecutive numbers k for which k^2 - k + 41 is composite.

Original entry on oeis.org

41, 41, 122, 162, 299, 326, 326, 1064, 1064, 1064, 1064, 1064, 5664, 5664, 5664, 5664, 9265, 9265, 9265, 22818, 22818, 37784, 37784, 47494, 100202, 100202, 100202, 167628, 167628, 167628, 167628, 167628, 167628, 167628, 167628, 176956, 176956, 176956, 1081297
Offset: 1

Views

Author

Amiram Eldar, Jun 14 2017

Keywords

Comments

This sequence is inspired by the problem proposed by Sidney Kravitz in 1963: "It is known that f(n)=n^2-n+41 yields prime numbers for n=1, 2, ..., 40. Find a sequence of 40 consecutive values of n for which f(n) is composite." Lawrence A. Ringenberg and others suggested the solution that starts at f(1)*f(2)*...*f(40)+1 (about 4.890... * 10^101). B. A. Hausmann suggested the smaller solution that starts at f(1)*f(2)*...*f(20)-19 (about 3.213... * 10^42). The smallest solution is a(40) = 1081297.

Examples

			The values of f(n)=n^2-n+41 at 122, 123 and 124 are: 14803 = 113*131, 15047 = 41*367 and 15293 = 41*373. This is the first case of 3 consecutive composite values, thus a(3) = 122.
		

References

  • Thomas Koshy, Elementary Number Theory with Applications, Academic Press, 2nd edition, 2007, Chapter 2, p. 147, exercise 50.

Crossrefs

Programs

  • Mathematica
    f[n_] := n^2 - n + 41; a = PrimeQ[f[Range[1, 10^7]]]; b = Split[a]; c = Length /@ b; d = Accumulate[c]; nc = Length[c]; e = {}; For[len = 0, len < 100, len++; k = 2;  While[k <= nc && c[[k]] < len, k += 2]; If[k <= nc && c[[k]] >= len, ind = d[[k - 1]] + 1; e = AppendTo[e, ind]]]; e
Previous Showing 11-20 of 20 results.