A302182
Number of 3D walks of type abc.
Original entry on oeis.org
1, 1, 5, 12, 62, 200, 1065, 3990, 21714, 89082, 492366, 2147376, 12004740, 54718092, 308559537, 1454116950, 8255788970, 39935276810, 227976044010, 1126178350440, 6457854821340, 32456552441040, 186814834574550, 952569927106980, 5500292590186380, 28391993275117500
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
-
from math import comb as binomial
def row(n: int) -> list[int]:
return sum(binomial(n, k)*binomial(k, k//2)//(k//2+1)*((k+1) %2)*binomial(n-k, (n-k)//2)**2 for k in range(n+1))
for n in range(26): print(row(n)) # Mélika Tebni, Nov 27 2024
A302184
Number of 3D walks of type abe.
Original entry on oeis.org
1, 2, 7, 26, 108, 472, 2159, 10194, 49396, 244328, 1229308, 6273896, 32410096, 169181664, 891181607, 4731912082, 25302648644, 136150941064, 736747902236, 4007011320808, 21893702201648, 120125750018656, 661630546993116, 3656966382542984, 20278320788680912, 112782556853239712
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A126120,
A138547,
A145847,
A145867,
A150500,
A202814.
-
a := n -> 2*add(binomial(n, k)*binomial(k, k/2)*binomial(2*(n-k), n-k)/(k+2), k = 0..n, 2): seq(a(n), n = 0..25); # Peter Luschny, Nov 30 2024
-
from math import comb as binomial
def a(n: int):
return sum(binomial(n, k)*binomial(k, k//2)//(k//2+1)*((k+1) %2)*binomial(2*(n-k), n-k) for k in range(n+1))
print([a(n) for n in range(26)]) # Mélika Tebni, Nov 30 2024
A342800
Number of self-avoiding polygons on a 3-dimensional cubic lattice where each walk consists of steps with incrementing length from 1 to n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 24, 72, 0, 0, 1704, 5184, 0, 0, 193344, 600504, 0, 0, 34321512, 141520752, 0, 0, 9205815672, 37962945288, 0, 0
Offset: 1
a(1) to a(6) = 0 as no self-avoiding closed-loop walk is possible.
a(7) = 24 as there is one walk which forms a closed loop which can be walked in 24 different ways on a 3D cubic lattice. These walks, and those for n(8) = 72, are purely 2-dimensional. See A334720 for images of these walks.
a(11) = 1704. These walks consist of 120 purely 2-dimensional walks and 1584 3-dimensional walks. One of these 3-dimensional walks is:
.
/|
/ | z y
/ | | /
7 +y / | |/
/ | 8 -z |----- x
6 +x / |
|---.---.---.---.---.---/ | 9 +x
| |---.---.---.---.---.---.---.---.---/
| 5 +z /
| /
|---.---.---.---/ /
4 -x / 3 +y /
/ / 10 -y
| 2 +z /
| /
| 1 +z /
X---.---.---.---.---.---.---.---.---.---.---/
11 -x
.
A135390
Number of walks from origin to (1,0,0) in a cubic lattice.
Original entry on oeis.org
1, 15, 310, 7455, 195426, 5416026, 156061620, 4628393055, 140348412490, 4331544836190, 135614951248140, 4296741195214650, 137507314754659500, 4438467396322843500, 144329729055650881560, 4723733064176346346335
Offset: 0
Stefan Hollos (stefan(AT)exstrom.com), Dec 11 2007
-
f[n_] := Binomial[2 n + 1, n]*Sum[ Binomial[n, k]*Binomial[n + 1, k]*Binomial[2 k, k], {k, 0, n}]; Array[f, 16, 0] (* Robert G. Wilson v *)
-
a(n) = binomial(2*n+1,n) * sum( binomial(n,k) * binomial(n+1,k) * binomial(2*k,k), k, 0, n );
Original entry on oeis.org
1, 4, 42, 660, 12810, 281736, 6727644, 170316432, 4504487130, 123255492360, 3465702008340, 99645553785960, 2918768920720380, 86852063374902000, 2619552500788984200, 79939673971478231760
Offset: 0
-
sq := (1-40*x+144*x^2)^(1/2); pb := 54*x*(108*x^2-27*x+1+(9*x-1)*sq);
H1 := hypergeom([7/6,1/3],[1],pb); H2 := hypergeom([1/6,4/3],[1],pb);
fa := (10-72*x-6*sq)^(1/2)/(216*x);
ogf := fa*((648*x^2+90*x+1+(54*x+3)*sq)*H1^2 - (612*x-7+3*sq)*H1*H2 + 8*(72*x-1)*H2^2); series(ogf,x=0,20); # Mark van Hoeij, Nov 12 2011
A302178
The number of 3D walks of semilength n in a quadrant returning to the origin.
Original entry on oeis.org
1, 4, 40, 570, 9898, 195216, 4209084, 96941130, 2349133930, 59272544760, 1545550116240, 41416083787260, 1135679731004700, 31760915181412800, 903492759037272480, 26086451983000501410, 763124703525758894490, 22585374873810849150600, 675419388009799152812400
Offset: 0
- Nachum Dershowitz, Touchard's Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5. The sequence is type aab in Table 3.
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
A302179
The number of 3D walks of length n in an octant returning to axis of origin.
Original entry on oeis.org
1, 1, 4, 9, 40, 120, 570, 1995, 9898, 38178, 195216, 805266, 4209084, 18239364, 96941130, 436235085, 2349133930, 10891439130, 59272544760, 281544587610, 1545550116240, 7489973640240, 41416083787260, 204122127237210, 1135679731004700, 5678398655023500, 31760915181412800, 160789633105902300
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
-
C(n) = binomial(2*n, n)/(n+1); \\ A000108
f(n) = binomial(n, floor(n/2)); \\ A001405
a(n) = sum(i=0, n, if (!(i%2), sum(j=0, n-i, if (!(j%2), C(i/2)*C(j/2)*f(n-i-j)*n!/(i! * j! * (n-i-j)!))))); \\ Michel Marcus, Aug 07 2020
A302183
Number of 3D n-step walks of type abd.
Original entry on oeis.org
1, 1, 4, 10, 39, 131, 521, 1989, 8149, 33205, 139870, 592120, 2552155, 11079303, 48639722, 214997228, 957817013, 4292316197, 19349957108, 87663905954, 399038606291, 1823961268751, 8369603968599, 38540835938335, 178056111047329, 825079806039121, 3833960405339446
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
-
from math import comb as binomial
def M(n): return sum(binomial(n, 2*k)*binomial(2*k, k)//(k+1) for k in range(n//2+1)) # Motzkin numbers
def a(n):
return sum(binomial(n, k)*binomial(k, k//2)*((k+1) %2)*M(n-k) for k in range(n+1))
print([a(n) for n in range(27)]) # Mélika Tebni, Dec 03 2024
A302185
Number of 3D n-step walks of type acc.
Original entry on oeis.org
1, 2, 7, 24, 98, 400, 1785, 7980, 37674, 178164, 874146, 4294752, 21667932, 109436184, 563910633, 2908233900, 15235550330, 79870553620, 424021948350, 2252356700880, 12088746573540, 64913104882080, 351594254659830, 1905139854213960, 10399223643879420, 56783986550235000
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
-
b:= n-> binomial(n, floor(n/2))*binomial(n+1, floor((n+1)/2)):
C:= n-> binomial(2*n, n)/(n+1):
a:= n-> add(binomial(n, 2*k)*C(k)*b(n-2*k), k=0..n/2):
seq(a(n), n=0..25); # Alois P. Heinz, Dec 06 2024
# second Maple program:
a:= proc(n) option remember; `if`(n<4, [1, 2, 7, 24][n+1],
(8*(14*n^4+85*n^3+190*n^2+188*n+63)*a(n-1)+4*(n-1)*
(80*n^4+418*n^3+676*n^2+269*n-108)*a(n-2)-96*(n-1)*(n-2)*
(10*n^2+31*n+27)*a(n-3)-144*(n-1)*(n-2)*(n-3)*(8*n^2+33*n+36)*
a(n-4))/((n+4)*(n+3)*(n+2)*(8*n^2+17*n+11)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Dec 06 2024
-
b[n_] := Binomial[n, Floor[n/2]]*Binomial[n+1, Floor[(n+1)/2]];
c[n_] := Binomial[2*n, n]/(n+1);
a[n_] := Sum[Binomial[n, 2*k]*c[k]*b[n - 2*k], {k, 0, n/2}];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 28 2025, after Alois P. Heinz *)
-
from math import comb as binomial
def C(n): return (binomial(2*n, n)//(n+1)) # Catalan numbers
def a(n):
return sum(binomial(n, k)*C((k+1)//2)*C(k//2)*(2*(k//2)+1)*binomial(n-k, (n-k)//2) for k in range(n+1))
print([a(n) for n in range(26)]) # Mélika Tebni, Dec 06 2024
A302186
Number of 3D walks of type ace.
Original entry on oeis.org
1, 3, 11, 44, 188, 842, 3911, 18692, 91412, 455540, 2306028, 11829424, 61375408, 321583108, 1699500055, 9049714852, 48513809796, 261638920412, 1418673379052, 7730011715760, 42305916178288, 232475082183544, 1282208011668988, 7096065370945168, 39394821683770960, 219341739839760912
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867 (number of 3D walks of type acd),
A150500,
A202814.
-
from math import comb as binomial
def C(n): return (binomial(2*n, n)//(n+1)) # Catalan numbers
def row(n: int) -> list[int]:
return sum(binomial(n, k)*sum(binomial(k, j)*C((j+1)//2)*C(j//2)*(2*(j//2)+1) for j in range(k+1)) for k in range(n+1))
for n in range(26): print(row(n)) # Mélika Tebni, Nov 29 2024
Comments