cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A302182 Number of 3D walks of type abc.

Original entry on oeis.org

1, 1, 5, 12, 62, 200, 1065, 3990, 21714, 89082, 492366, 2147376, 12004740, 54718092, 308559537, 1454116950, 8255788970, 39935276810, 227976044010, 1126178350440, 6457854821340, 32456552441040, 186814834574550, 952569927106980, 5500292590186380, 28391993275117500
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.

Crossrefs

Programs

  • Python
    from math import comb as binomial
    def row(n: int) -> list[int]:
        return sum(binomial(n, k)*binomial(k, k//2)//(k//2+1)*((k+1) %2)*binomial(n-k, (n-k)//2)**2 for k in range(n+1))
    for n in range(26): print(row(n)) # Mélika Tebni, Nov 27 2024

Formula

From Mélika Tebni, Nov 27 2024: (Start)
a(n) = Sum_{k=0..n} binomial(n, k)*A126120(k)*A018224(n-k).
a(2*n+1) = A135394(n) / (2*n+2).
a(2*n) = A302181(n). (End)

Extensions

a(13)-a(25) from Mélika Tebni, Nov 27 2024

A302184 Number of 3D walks of type abe.

Original entry on oeis.org

1, 2, 7, 26, 108, 472, 2159, 10194, 49396, 244328, 1229308, 6273896, 32410096, 169181664, 891181607, 4731912082, 25302648644, 136150941064, 736747902236, 4007011320808, 21893702201648, 120125750018656, 661630546993116, 3656966382542984, 20278320788680912, 112782556853239712
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.

Crossrefs

Programs

  • Maple
    a := n -> 2*add(binomial(n, k)*binomial(k, k/2)*binomial(2*(n-k), n-k)/(k+2), k = 0..n, 2): seq(a(n), n = 0..25);  # Peter Luschny, Nov 30 2024
  • Python
    from math import comb as binomial
    def a(n: int):
        return sum(binomial(n, k)*binomial(k, k//2)//(k//2+1)*((k+1) %2)*binomial(2*(n-k), n-k) for k in range(n+1))
    print([a(n) for n in range(26)]) # Mélika Tebni, Nov 30 2024

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*A126120(k)*A000984(n-k). - Mélika Tebni, Nov 30 2024

Extensions

a(12)-a(25) from Mélika Tebni, Nov 30 2024

A342800 Number of self-avoiding polygons on a 3-dimensional cubic lattice where each walk consists of steps with incrementing length from 1 to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 24, 72, 0, 0, 1704, 5184, 0, 0, 193344, 600504, 0, 0, 34321512, 141520752, 0, 0, 9205815672, 37962945288, 0, 0
Offset: 1

Views

Author

Scott R. Shannon, Mar 21 2021

Keywords

Comments

This sequence gives the number of self-avoiding polygons (closed-loop self-avoiding walks) on a 3D cubic lattice where the walk starts with a step length of 1 which then increments by 1 after each step up until the step length is n. Like A334720 and A335305 only n values corresponding to even triangular numbers can form closed loops. All possible paths are counted, including those that are equivalent via rotation and reflection.

Examples

			a(1) to a(6) = 0 as no self-avoiding closed-loop walk is possible.
a(7) = 24 as there is one walk which forms a closed loop which can be walked in 24 different ways on a 3D cubic lattice. These walks, and those for n(8) = 72, are purely 2-dimensional. See A334720 for images of these walks.
a(11) = 1704. These walks consist of 120 purely 2-dimensional walks and 1584 3-dimensional walks. One of these 3-dimensional walks is:
.
                                /|
                               / |                        z  y
                              /  |                        | /
                        7 +y /   |                        |/
                            /    | 8 -z                   |----- x
             6 +x          /     |
  |---.---.---.---.---.---/      |               9 +x
  |                              |---.---.---.---.---.---.---.---.---/
  | 5 +z                                                            /
  |                                                                /
  |---.---.---.---/                                               /
        4 -x     /  3 +y                                         /
                /                                               /  10 -y
                | 2 +z                                         /
                |                                             /
                | 1 +z                                       /
                X---.---.---.---.---.---.---.---.---.---.---/
                                     11 -x
.
		

Crossrefs

A135390 Number of walks from origin to (1,0,0) in a cubic lattice.

Original entry on oeis.org

1, 15, 310, 7455, 195426, 5416026, 156061620, 4628393055, 140348412490, 4331544836190, 135614951248140, 4296741195214650, 137507314754659500, 4438467396322843500, 144329729055650881560, 4723733064176346346335
Offset: 0

Views

Author

Stefan Hollos (stefan(AT)exstrom.com), Dec 11 2007

Keywords

Comments

a(n) is the number of walks of length 2n+1 on a cubic lattice that start at the origin and end at (1,0,0) using steps (1,0,0), (-1,0,0), (0,1,0), (0,-1,0), (0,0,1), (0,0,-1).

Crossrefs

Cf. A002896.

Programs

  • Mathematica
    f[n_] := Binomial[2 n + 1, n]*Sum[ Binomial[n, k]*Binomial[n + 1, k]*Binomial[2 k, k], {k, 0, n}]; Array[f, 16, 0] (* Robert G. Wilson v *)
  • Maxima
    a(n) = binomial(2*n+1,n) * sum( binomial(n,k) * binomial(n+1,k) * binomial(2*k,k), k, 0, n );

Formula

a(n) = binomial(2*n+1,n) * Sum_{k=0..n} binomial(n,k) * binomial(n+1,k) * binomial(2*k,k).
G.f.: (1/(6*z)) * (1/sqrt(1+12*z)*hypergeom([1/8,3/8],[1],64/81*z*(1+sqrt(1-36*z))^2*(2+sqrt(1-36*z))^4/(1+12*z)^4)*hypergeom([1/8,3/8],[1],64/81*z*(1-sqrt(1-36*z))^2*(2-sqrt(1-36*z))^4/(1+12*z)^4) - 1). - Sergey Perepechko, Jan 31 2011
a(n) = A002896(n+1)/6.

A136045 Bisection of A138546.

Original entry on oeis.org

1, 4, 42, 660, 12810, 281736, 6727644, 170316432, 4504487130, 123255492360, 3465702008340, 99645553785960, 2918768920720380, 86852063374902000, 2619552500788984200, 79939673971478231760
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2008

Keywords

Programs

  • Maple
    sq := (1-40*x+144*x^2)^(1/2); pb := 54*x*(108*x^2-27*x+1+(9*x-1)*sq);
    H1 := hypergeom([7/6,1/3],[1],pb); H2 := hypergeom([1/6,4/3],[1],pb);
    fa := (10-72*x-6*sq)^(1/2)/(216*x);
    ogf := fa*((648*x^2+90*x+1+(54*x+3)*sq)*H1^2 - (612*x-7+3*sq)*H1*H2 + 8*(72*x-1)*H2^2); series(ogf,x=0,20); # Mark van Hoeij, Nov 12 2011

Formula

G.f.: ((41472*x^3 - 11520*x^2 + 288*x)*g'' + (-23040*x + 432 + 103680*x^2)*g' + (20736*x-864)*g)/1728 where g is the o.g.f. of A002896. - Mark van Hoeij, Nov 12 2011
a(n) = hypergeom([1/2,-n,-n],[1,2],4)*binomial(2*n,n). - Mark van Hoeij, May 13 2013
D-finite with recurrence n*(n+1)^2*a(n) +4*(-13*n^3+10*n^2+2*n-3)*a(n-1) +12*(2*n-3)*(26*n^2-61*n+39)*a(n-2) -432*(2*n-5)*(n-2)*(2*n-3)*a(n-3)=0. - R. J. Mathar, Jul 27 2022

A302178 The number of 3D walks of semilength n in a quadrant returning to the origin.

Original entry on oeis.org

1, 4, 40, 570, 9898, 195216, 4209084, 96941130, 2349133930, 59272544760, 1545550116240, 41416083787260, 1135679731004700, 31760915181412800, 903492759037272480, 26086451983000501410, 763124703525758894490, 22585374873810849150600, 675419388009799152812400
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Crossrefs

Formula

a(n) = Sum_{i=0..n,j=0..n-i} A000108(i) * A000108(j) * A000984_(n-i-j) * (2n)!/((2i)!*(2j)!*(2n-2i-2j)!). - Nachum Dershowitz, Aug 13 2020

Extensions

a(8)-a(18) from Nachum Dershowitz, Aug 03 2020
Name edited by Nachum Dershowitz, Aug 13 2020

A302179 The number of 3D walks of length n in an octant returning to axis of origin.

Original entry on oeis.org

1, 1, 4, 9, 40, 120, 570, 1995, 9898, 38178, 195216, 805266, 4209084, 18239364, 96941130, 436235085, 2349133930, 10891439130, 59272544760, 281544587610, 1545550116240, 7489973640240, 41416083787260, 204122127237210, 1135679731004700, 5678398655023500, 31760915181412800, 160789633105902300
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Crossrefs

Programs

  • PARI
    C(n) = binomial(2*n, n)/(n+1); \\ A000108
    f(n) = binomial(n, floor(n/2)); \\ A001405
    a(n) = sum(i=0, n, if (!(i%2), sum(j=0, n-i, if (!(j%2), C(i/2)*C(j/2)*f(n-i-j)*n!/(i! * j! * (n-i-j)!))))); \\ Michel Marcus, Aug 07 2020

Formula

a(n) = Sum_{i=0..n, j=0..n-i, i,j even} A126120(i) * A126120(j) * A001405(n-i-j) * n!/(i! * j! * (n-i-j)!). - Nachum Dershowitz, Aug 06 2020
E.g.f.: (BesselI(1, 2*x)/x)^2*(BesselI(0, 2*x) + BesselI(1, 2*x)). - Mélika Tebni, Jan 06 2025

Extensions

a(13)-a(27) from Nachum Dershowitz, Aug 04 2020

A302183 Number of 3D n-step walks of type abd.

Original entry on oeis.org

1, 1, 4, 10, 39, 131, 521, 1989, 8149, 33205, 139870, 592120, 2552155, 11079303, 48639722, 214997228, 957817013, 4292316197, 19349957108, 87663905954, 399038606291, 1823961268751, 8369603968599, 38540835938335, 178056111047329, 825079806039121, 3833960405339446
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.

Crossrefs

Programs

  • Python
    from math import comb as binomial
    def M(n): return sum(binomial(n, 2*k)*binomial(2*k, k)//(k+1) for k in range(n//2+1)) # Motzkin numbers
    def a(n):
        return sum(binomial(n, k)*binomial(k, k//2)*((k+1) %2)*M(n-k) for k in range(n+1))
    print([a(n) for n in range(27)]) # Mélika Tebni, Dec 03 2024

Formula

From Mélika Tebni, Dec 03 2024: (Start)
a(n) = Sum_{k=0..n} binomial(n, k)*A126869(k)*A001006(n-k).
Inverse binomial transform of A302184. (End)

Extensions

a(13)-a(26) from Mélika Tebni, Dec 03 2024

A302185 Number of 3D n-step walks of type acc.

Original entry on oeis.org

1, 2, 7, 24, 98, 400, 1785, 7980, 37674, 178164, 874146, 4294752, 21667932, 109436184, 563910633, 2908233900, 15235550330, 79870553620, 424021948350, 2252356700880, 12088746573540, 64913104882080, 351594254659830, 1905139854213960, 10399223643879420, 56783986550235000
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.

Crossrefs

Programs

  • Maple
    b:= n-> binomial(n, floor(n/2))*binomial(n+1, floor((n+1)/2)):
    C:= n-> binomial(2*n, n)/(n+1):
    a:= n-> add(binomial(n, 2*k)*C(k)*b(n-2*k), k=0..n/2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 06 2024
    # second Maple program:
    a:= proc(n) option remember; `if`(n<4, [1, 2, 7, 24][n+1],
          (8*(14*n^4+85*n^3+190*n^2+188*n+63)*a(n-1)+4*(n-1)*
          (80*n^4+418*n^3+676*n^2+269*n-108)*a(n-2)-96*(n-1)*(n-2)*
          (10*n^2+31*n+27)*a(n-3)-144*(n-1)*(n-2)*(n-3)*(8*n^2+33*n+36)*
           a(n-4))/((n+4)*(n+3)*(n+2)*(8*n^2+17*n+11)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 06 2024
  • Mathematica
    b[n_] := Binomial[n, Floor[n/2]]*Binomial[n+1, Floor[(n+1)/2]];
    c[n_] := Binomial[2*n, n]/(n+1);
    a[n_] := Sum[Binomial[n, 2*k]*c[k]*b[n - 2*k], {k, 0, n/2}];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 28 2025, after Alois P. Heinz *)
  • Python
    from math import comb as binomial
    def C(n): return (binomial(2*n, n)//(n+1)) # Catalan numbers
    def a(n):
        return sum(binomial(n, k)*C((k+1)//2)*C(k//2)*(2*(k//2)+1)*binomial(n-k, (n-k)//2) for k in range(n+1))
    print([a(n) for n in range(26)]) # Mélika Tebni, Dec 06 2024

Formula

From Mélika Tebni, Dec 06 2024: (Start)
E.g.f.: (BesselI(0, 2*x) + BesselI(1, 2*x))^2*BesselI(1, 2*x) / x.
a(n) = Sum_{k=0..n} binomial(n, k)*A005558(k)*A001405(n-k).
a(2*n+1) = 2*A302182(2*n+1) = A135394(n) / (n+1).
For n > 0, a(A000918(n)) is odd. (End)

Extensions

a(13)-a(25) from Mélika Tebni, Dec 06 2024

A302186 Number of 3D walks of type ace.

Original entry on oeis.org

1, 3, 11, 44, 188, 842, 3911, 18692, 91412, 455540, 2306028, 11829424, 61375408, 321583108, 1699500055, 9049714852, 48513809796, 261638920412, 1418673379052, 7730011715760, 42305916178288, 232475082183544, 1282208011668988, 7096065370945168, 39394821683770960, 219341739839760912
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.

Crossrefs

Cf. A000108, A000984, A002212, A002896, A005572, A026375, A064037, A081671, A138547, A145847, A145867 (number of 3D walks of type acd), A150500, A202814.

Programs

  • Python
    from math import comb as binomial
    def C(n): return (binomial(2*n, n)//(n+1)) # Catalan numbers
    def row(n: int) -> list[int]:
         return sum(binomial(n, k)*sum(binomial(k, j)*C((j+1)//2)*C(j//2)*(2*(j//2)+1) for j in range(k+1)) for k in range(n+1))
    for n in range(26): print(row(n)) # Mélika Tebni, Nov 29 2024

Formula

Binomial transform of A145847. - Mélika Tebni, Nov 29 2024

Extensions

a(12)-a(25) from Mélika Tebni, Nov 29 2024
Previous Showing 21-30 of 32 results. Next