cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A359532 Decimal expansion of 2*log(2)/Pi.

Original entry on oeis.org

4, 4, 1, 2, 7, 1, 2, 0, 0, 3, 0, 5, 3, 0, 3, 1, 8, 6, 7, 9, 2, 9, 1, 2, 8, 6, 4, 2, 3, 5, 9, 9, 5, 3, 8, 1, 9, 6, 5, 3, 7, 9, 4, 9, 7, 4, 5, 9, 3, 1, 0, 9, 4, 0, 9, 7, 8, 5, 2, 6, 4, 6, 7, 4, 1, 4, 2, 4, 3, 5, 3, 4, 0, 9, 3, 3, 7, 3, 3, 6, 4, 9, 9, 5, 9, 8, 6, 2, 2, 3, 7, 0, 7, 9, 3, 5, 1, 1
Offset: 0

Views

Author

Stefano Spezia, Jan 04 2023

Keywords

Comments

2*log(2)*n/Pi is also the dominant term in the asymptotic expansion of Sum_{k=1..n-1} (-1)^(k+1)*csc(Pi*k/n) at n tending to infinity. - Iaroslav V. Blagouchine, Apr 10 2025

Examples

			0.441271200305303186792912864235995381965...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[2Log[2]/Pi,98]]]

Formula

Equals 2*A284983.
Equals Sum_{i>=0} (-1/64)^i*binomial(2*i, i)^3*(4*i + 1)*H_{2*i}, where H_m is the m-th harmonic number (negated).

A359533 Decimal expansion of Sum_{k>=0} (-1/64)^k*binomial(2*k, k)^3*(4*k + 1)*H_k, where H_k is the k-th harmonic number (negated).

Original entry on oeis.org

2, 7, 6, 4, 2, 7, 2, 0, 4, 2, 4, 5, 9, 8, 6, 5, 7, 3, 0, 9, 2, 6, 3, 9, 8, 2, 5, 6, 1, 6, 8, 8, 9, 9, 4, 6, 7, 8, 3, 7, 4, 0, 7, 9, 5, 1, 9, 0, 4, 8, 5, 0, 6, 3, 0, 3, 2, 7, 7, 6, 9, 2, 0, 2, 7, 0, 3, 3, 7, 9, 6, 9, 4, 4, 5, 8, 9, 8, 7, 9, 7, 1, 0, 9, 8, 0, 1
Offset: 0

Views

Author

Stefano Spezia, Jan 04 2023

Keywords

Examples

			0.276427204245986573092639825616889946783740795...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[(Gamma[1/8]Gamma[3/8]/(Gamma[1/4]Gamma[3/4]))^2/(6Sqrt[2]Pi)-4Log[2]/Pi,100]]]

Formula

Equals 4*log(2)/Pi - (Gamma(1/8)*Gamma(3/8)/(Gamma(1/4)*Gamma(3/4)))^2/(6*sqrt(2)*Pi).
Equals 4*log(2)/Pi - (Gamma(1/8)*Gamma(3/8))^2/(12*sqrt(2)*Pi^3).

A374605 a(n) = Sum_{k = 0..n} binomial(n, k)^2*binomial(n+k, k)*binomial(3*n+2*k, n).

Original entry on oeis.org

1, 13, 621, 40864, 3116125, 258687513, 22695228864, 2069939892096, 194303918495709, 18648446389798225, 1821631879087498621, 180513102382789033728, 18101940249015916366528, 1833572727177462316881472, 187323995560940882748187200, 19279943156312884441303524864, 1997221716775275248175573251037
Offset: 0

Views

Author

Peter Bala, Jul 20 2024

Keywords

Comments

Compare with the identity Sum_{k = 0..n} binomial(n, k)^2 * binomial(n+k, k) * binomial(2*n+k, n) = binomial(2*n, n)^3 = A002897(n).
It is easy to see that for odd prime p, binomial(2*n, n)^3 is divisible by p^3 for integer n in the interval [(p + 1)/2, p - 1]. A similar property appears to hold for the present sequence. We conjecture that for prime p >= 5, a(n) is divisible by p^3 for integer n in the interval [ceiling((2*p + 1)/3), p - 1] (checked up to p = 101).
More generally, for m >= 2, a similar divisibility property appears to hold for the sequence whose n-th term is equal to Sum_{k = 0..n} binomial(n, k)^2* binomial(n+k, k)*binomial((m + 1)*n + m*k, n).

Examples

			Factorization of a(8) thru a(10) showing divisibility by 11^3:
a(8) = (3^6)*11^3*10667*18773
a(9) = (5^2)*7*(11^3)*(13^3)*3607*10103
a(10) = (11^3)*(13^4)*31*22699*68099.
		

Crossrefs

Programs

  • Maple
    seq(add(binomial(n, k)^2*binomial(n+k, k)*binomial(3*n+2*k, n), k = 0..n), n = 0..20);
    # faster program for large n
    seq(simplify(binomial(3*n, n)*hypergeom([-n, -n, (3*n+1)/2, (3*n+2)/2], [1, 1, n+1/2], 1)), n = 0..20);

Formula

a(n) = binomial(3*n, n)*hypergeom([-n, -n, (3*n+1)/2, (3*n+2)/2], [1, 1, n+1/2], 1).
P-recursive: 16*n^3*(5616*n^4 - 30888*n^3 + 63459*n^2 - 57709*n + 19600)*(4*n - 1)^2*(4*n - 3)^2*a(n) = 36*(72783360*n^11 - 655050240*n^10 + 2595613248*n^9 - 5966404272*n^8 + 8824615470*n^7 - 8803399545*n^6 + 6034085115*n^5 - 2836309905*n^4 + 893904075*n^3 - 179376410*n^2 + 20562360*n - 1019200)*a(n-1) + 27*n*(5616*n^4 - 8424*n^3 + 4491*n^2 - 991*n + 78)*(3*n - 4)^3*(3*n - 5)^3*a(n-2) with a(0) = 1, a(1) = 13.
a(n) ~ 3^(9*n/2) * (1 + sqrt(3))^(6*n + 3) / (Pi^(3/2) * n^(3/2) * 2^(9*n + 9/2)). - Vaclav Kotesovec, Jul 22 2024

A229955 Triangular array read by rows: 3 dimensional analog of A227997.

Original entry on oeis.org

8, 152, 64, 5056, 2432, 512, 205720, 104000, 29184, 4096, 9305152, 4828544, 1525248, 311296, 32768, 449404224, 236984448, 79898624, 19226624, 3112960, 262144, 22695553536, 12099474432, 4251479040, 1123909632, 221839360, 29884416, 2097152, 1183891745688, 636162156096, 230017430016, 64636047360, 14330265600, 2413559808, 278921216, 16777216
Offset: 1

Views

Author

Geoffrey Critzer, Oct 04 2013

Keywords

Comments

T(n,k) is the number of walks on the 3 dimensional grid that start and end at the origin using 2n steps and having exactly k primitive loops. The steps are in the eight directions: (1,1,1), (1,1,-1), (1,-1,1), (1,-1,-1), (-1,1,1), (-1,1,-1), (-1,-1,1), (-1,-1,-1). A primitive loop is a walk that starts and ends on the origin but does not otherwise touch the origin.
Column 1 is A094059.
Row sums are A002897.

Examples

			8,
152, 64,
5056, 2432, 512,
205720, 104000, 29184, 4096,
9305152, 4828544, 1525248, 311296, 32768,
449404224, 236984448, 79898624, 19226624, 3112960, 262144
		

Programs

  • Mathematica
    nn=6;a=Sum[Binomial[2n,n]^3x^n,{n,0,nn}];Map[Select[#,#>0&]&,Drop[CoefficientList[Series[1/(1-y(1-1/a)),{x,0,nn}],{x,y}],1]]//Grid

Formula

G.f.: 1/( 1 - y*(1 - 1/A(x)) ) where A(x) is the o.g.f. for A002897.
Generally for such walks in N dimensions: 1/( 1 - y*(1 - 1/B(x)) ) where B(x) = Sum_{n>=0} binomial(2n,n)^N*x^n.

A302577 Convolution square root of A186284 multiplied by 2^n.

Original entry on oeis.org

1, 2, 94, 6628, 554246, 50936956, 4971074892, 505747739784, 53048521913478, 5695802803696236, 622942370315360004, 69155891028297395448, 7772714892571857579036, 882718626126348791323992, 101137353917153181195426264, 11676481964194514316750017040
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 10 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Hypergeometric2F1[1/4, 1/4, 1, 64*x]^(1/4), {x, 0, nmax}], x] * 2^Range[0, nmax]

Formula

a(n) ~ Pi^(9/8) * 2^(7*n - 5/4) / (Gamma(1/4)^(7/2) * n^(3/2)).

A376228 a(n) = (6*n+1) * (2*n)!^3 / n!^6.

Original entry on oeis.org

1, 56, 2808, 152000, 8575000, 496093248, 29188893888, 1738242215424, 104455598247000, 6321316756040000, 384702925005146176, 23520160000755565056, 1443504313932496274368, 88879637239345064000000, 5487711609457595160000000, 339644002672064899081728000, 21065385579274083203741943000
Offset: 0

Views

Author

Paul D. Hanna, Oct 17 2024

Keywords

Examples

			G.f.: A(x) = 1 + 56*x + 2808*x^2 + 152000*x^3 + 8575000*x^4 + 496093248*x^5 + 29188893888*x^6 + 1738242215424*x^7 + ...
where
A(x) = 1 + 7*(1/2)^3*64*x + 13*((1*3)/(2*4))^3*64^2*x^2 + 19*((1*3*5)/(2*4*6))^3*64^3*x^3 + 25*((1*3*5*7)/(2*4*6*8))^3*64^4*x^4 + ... + (6*n+1)*(2*n)!^3/n!^6*x^n + ...
SPECIFIC VALUES.
At x = 1/256 we have the series
4/Pi = 1 + 7*(1/2)^3/4 + 13*((1*3)/(2*4))^3/4^2 + 19*((1*3*5)/(2*4*6))^3/4^3 + 25*((1*3*5*7)/(2*4*6*8))^3/4^4 + ... = 1.273239544735162686...
see formula 28 in the Ramanujan link for details.
		

Crossrefs

Cf. A002897.

Programs

  • Mathematica
    a[n_]:=(6*n+1) * (2*n)!^3 / n!^6; Array[a,17,0] (* Stefano Spezia, Oct 17 2024 *)

Formula

a(n) = (6*n+1) * A002897(n).
a(n) ~ 3*2^(6*n+1)/sqrt(n*Pi^3). - Stefano Spezia, Oct 17 2024
D-finite with recurrence n^3*a(n) +8*(56*n^3-252*n^2+330*n-141)*a(n-1) -4096*(2*n-3)^3*a(n-2)=0. - R. J. Mathar, Oct 24 2024
Previous Showing 31-36 of 36 results.