cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A303832 The number of edge-rooted unlabeled connected graphs with n edges.

Original entry on oeis.org

1, 1, 4, 10, 32, 101, 346, 1220, 4517, 17338, 69107, 285009, 1215015, 5344224, 24223641, 113001129, 541913075, 2668817544, 13484234188, 69831773559, 370361639587, 2009988998148, 11153858854425, 63242354288220, 366140089188603, 2163036956456422, 13031489297543608
Offset: 1

Views

Author

R. J. Mathar, May 04 2018

Keywords

Examples

			a(1)=1: the connected graph with 1 edge (which is rooted).
a(2)=1: the connected graph with 2 edges (one rooted).
a(3)=4: the triangle graph with one choice of rooting, the linear tree with either the middle or a terminating edge rooted, the star graph with one edge rooted.
		

Crossrefs

Cf. A126133 (not necessarily connected), A000664, A303830 (by number of nodes).

Programs

  • PARI
    \\ See A339063 for G.
    seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1, 1]) + G(2*n, x+A, [2]))/(2*G(2*n, x+A, [])*(1+x)))} \\ Andrew Howroyd, Nov 21 2020

Formula

G.f. A(x) satisfies: A(x)*A000664(x) = A126133(x).

A322151 Number of labeled connected graphs with loops with n edges (the vertices are {1,2,...,k} for some k).

Original entry on oeis.org

1, 2, 5, 27, 216, 2311, 30988, 499919, 9431026, 203743252, 4960335470, 134382267082, 4009794148101, 130668970606412, 4617468180528235, 175867725701333896, 7182126650899080024, 313063334893103361130, 14507460736615554141354, 712192629608088061633746
Offset: 0

Views

Author

Gus Wiseman, Nov 28 2018

Keywords

Crossrefs

Row sums of A322147. The unlabeled version is A191970.

Programs

  • Mathematica
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[multsubs[Range[n+1],2],{n}],And[Union@@#==Range[Max@@Union@@#],Length[csm[#]]==1]&]],{n,5}]
  • PARI
    Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
    seq(n)={Vec(vecsum(Connected(vector(2*n, j, (1 + x + O(x*x^n))^binomial(j+1,2)))))} \\ Andrew Howroyd, Nov 28 2018

Extensions

Terms a(7) and beyond from Andrew Howroyd, Nov 28 2018

A339040 Number of unlabeled connected simple graphs with n edges rooted at two noninterchangeable vertices.

Original entry on oeis.org

1, 3, 10, 35, 125, 460, 1747, 6830, 27502, 113987, 485971, 2129956, 9591009, 44341610, 210345962, 1023182861, 5100235807, 26035673051, 136023990102, 726877123975, 3970461069738, 22156281667277, 126234185382902, 733899631974167, 4351500789211840
Offset: 1

Views

Author

Andrew Howroyd, Nov 20 2020

Keywords

Crossrefs

Programs

  • PARI
    \\ See A339063 for G.
    seq(n)={my(A=O(x*x^n), g=G(2*n, x+A, [])); Vec(G(2*n, x+A, [1, 1])/g - (G(2*n, x+A, [1])/g)^2)}

Formula

G.f.: f(x)/g(x) - r(x)^2 where f(x), g(x) and r(x) are the g.f.'s of A339063, A000664 and A339039.

A339041 Number of unlabeled connected simple graphs with n edges rooted at two indistinguishable vertices.

Original entry on oeis.org

1, 2, 7, 21, 73, 255, 946, 3618, 14376, 58957, 249555, 1087828, 4878939, 22488282, 106432530, 516783762, 2572324160, 13116137104, 68461594211, 365559412868, 1995532789212, 11129600885183, 63381069498524, 368338847181336, 2183239817036378
Offset: 1

Views

Author

Andrew Howroyd, Nov 20 2020

Keywords

Crossrefs

Programs

  • PARI
    \\ See A339063 for G.
    seq(n)={my(A=O(x*x^n), g=G(2*n, x+A, []), gr=G(2*n, x+A, [1])/g); Vec(G(2*n, x+A, [1, 1])/g - gr^2 + G(2*n, x+A, [2])/g - subst(gr, x, x^2))/2}

Formula

G.f.: f(x)/g(x) - (r(x)^2 + r(x^2))/2 where f(x), g(x) and r(x) are the g.f.'s of A339064, A000664 and A339039.

A010357 Number of unlabeled nonseparable (or 2-connected) loopless multigraphs with n edges.

Original entry on oeis.org

1, 1, 2, 3, 6, 14, 32, 90, 279, 942, 3468, 13777, 57747, 254671, 1170565, 5580706, 27487418, 139477796, 727458338, 3893078684, 21346838204, 119787629215, 687200870250
Offset: 1

Views

Author

Keywords

Comments

Original name: Multi-edge stars with n edges.

Examples

			From _Andrew Howroyd_, Nov 23 2020: (Start)
The a(1) = 1 graph is a single edge (K_2 = P_2).
The a(2) = 1 graph is a double edge.
The a(3) = 2 graphs are a triple edge and the triangle (K_3).
The a(4) = 3 graphs are a quadruple edge, a triangle with one double edge and the square (C_4).
(End)
		

Crossrefs

Row sums of A339160.
A002218 counts unlabeled 2-connected graphs.
A013922 counts labeled 2-connected graphs.
A322140 is a labeled version.

Extensions

Name changed by Andrew Howroyd, Dec 05 2020
a(11)-a(20) added using geng/multig from nauty by Andrew Howroyd, Dec 05 2020
a(21)-a(23) from Sean A. Irvine, Apr 18 2024

A046742 Triangle of number of connected graphs with k >= 1 edges and n nodes (2 <= n <= k+1).

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 0, 2, 3, 0, 0, 1, 5, 6, 0, 0, 1, 5, 13, 11, 0, 0, 0, 4, 19, 33, 23, 0, 0, 0, 2, 22, 67, 89, 47, 0, 0, 0, 1, 20, 107, 236, 240, 106, 0, 0, 0, 1, 14, 132, 486, 797, 657, 235, 0, 0, 0, 0, 9, 138, 814, 2075, 2678, 1806, 551, 0, 0, 0, 0, 5, 126, 1169, 4495, 8548, 8833, 5026, 1301
Offset: 1

Views

Author

Keywords

Examples

			1;
0 1;
0 1 2;
0 0 2 3;
0 0 1 5 6;
0 0 1 5 13 11;
0 0 0 4 19 33 23;
0 0 0 2 22 67 89 47;
0 0 0 1 20 107 236 240 106;
0 0 0 1 14 132 486 797 657 235;
0 0 0 0 9 138 814 2075 2678 1806 551;
0 0 0 0 5 126 1169 4495 8548 8833 5026 1301;
0 0 0 0 2 95 1454 8404 22950 33851 28908 13999 3159;
0 0 0 0 1 64 1579 13855 53863 109844 130365 93569 39260 7741;
0 0 0 0 1 40 1515 20303 112618 313670 499888 489387 300748 110381 19320;
0 0 0 0 0 21 1290 26631 211866 803905 1694642 2179949 1799700 959374 311465 ...
... (so with 5 edges there's 1 graph with 4 nodes, 5 with 5 nodes and 1 with 6 nodes).
		

Crossrefs

Cf. A002905 (row sums), A008406, A046751, A054923, A054924 (transpose), A001349 (column sums).

Extensions

Data corrected by Sean A. Irvine, Apr 23 2021

A046751 Triangle read by rows of number of connected graphs with n nodes and k edges (n >= 2, 1 <= k <= n(n-1)/2).

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 2, 2, 1, 1, 0, 0, 0, 3, 5, 5, 4, 2, 1, 1, 0, 0, 0, 0, 6, 13, 19, 22, 20, 14, 9, 5, 2, 1, 1, 0, 0, 0, 0, 0, 11, 33, 67, 107, 132, 138, 126, 95, 64, 40, 21, 10, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 23, 89, 236, 486, 814, 1169, 1454, 1579, 1515, 1290, 970, 658, 400, 220, 114
Offset: 2

Views

Author

Keywords

Examples

			1;
0,1,1;
0,0,2,2,1, 1;
0,0,0,3,5, 5, 4, 2,  1,  1;
0,0,0,0,6,13,19,22, 20, 14,  9,  5, 2, 1, 1;
0,0,0,0,0,11,33,67,107,132,138,126,95,64,40,21,10,5,2,1,1;
[ the 4th row giving the numbers of connected graphs with 4 nodes and from 1 to 10 edges ].
		

Crossrefs

See A054924, which is the main entry for this triangle.

Extensions

More terms from Vladeta Jovovic, Apr 21 2000

A339039 Number of unlabeled connected simple graphs with n edges rooted at one distinguished vertex.

Original entry on oeis.org

1, 1, 2, 5, 13, 37, 114, 367, 1248, 4446, 16526, 63914, 256642, 1067388, 4590201, 20376849, 93240065, 439190047, 2126970482, 10579017047, 53983000003, 282345671127, 1512273916781, 8287870474339, 46438619162441, 265840311066579
Offset: 0

Views

Author

Andrew Howroyd, Nov 20 2020

Keywords

Crossrefs

Programs

  • PARI
    \\ See A339063 for G.
    seq(n)={my(A=O(x*x^n)); Vec(G(2*n, x+A, [1])/G(2*n, x+A, []))}

Formula

G.f.: f(x)/g(x) where f(x) is the g.f. of A053419 and g(x) is the g.f. of A000664.

A339044 Number of unlabeled connected simple graphs with n edges rooted at one oriented edge.

Original entry on oeis.org

1, 2, 6, 18, 57, 188, 651, 2336, 8719, 33741, 135185, 559908, 2394326, 10557283, 47943126, 223987316, 1075455181, 5301593544, 26807904317, 138924912857, 737220195148, 4002876571636, 22221898966507, 126042573704637, 729944250603862, 4313430995825272
Offset: 1

Views

Author

Andrew Howroyd, Nov 21 2020

Keywords

Crossrefs

Programs

  • PARI
    \\ See A339063 for G.
    seq(n)={my(A=O(x*x^n)); Vec(G(2*n, x+A, [1, 1])/G(2*n, x+A, [])/(1+x))}

Formula

G.f.: x*f(x)/((1+x)*g(x)) where f(x) is the g.f. of A339063 and g(x) is the g.f. of A000664.

A003089 Number of connected line graphs with n nodes.

Original entry on oeis.org

1, 1, 2, 5, 12, 30, 79, 227, 710, 2322, 8071, 29503, 112822, 450141, 1867871, 8037472, 35787667, 164551477, 779945969, 3804967442, 19079312775, 98211456209, 518397621443, 2802993986619, 15510781288250, 87765472487659, 507395402140211, 2994893000122118, 18035546081743772, 110741792670074054, 692894304050453139
Offset: 1

Views

Author

Keywords

Comments

Sequence is identical to the number of connected graphs on n edges (A002905), except for the term a(3). The three connected 3-edge graphs (P_4, K_3 and K_{1,3}) yield only two linegraphs because K_3 and K_{1,3} have isomorphic linegraphs. No other connected nonisomorphic graphs have isomorphic linegraphs.

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 221.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002905.

Extensions

More terms from Ronald C. Read.
More terms from Gordon F. Royle, Jun 05 2003
a(25)-a(26) from Max Alekseyev, Nov 25 2013
a(27) and beyond from Max Alekseyev, Sep 07 2016
Previous Showing 11-20 of 28 results. Next