A275337
Least k such that sigma(k*n) = sigma(k*n+1), or 0 if no such k exists.
Original entry on oeis.org
14, 7, 319, 341, 537
Offset: 1
a(3) = 319 because sigma(319*3) = sigma(319*3+1) = 1440.
-
Table[SelectFirst[Range[10^6], DivisorSigma[1, # n] == DivisorSigma[1, # n + 1] &], {n, 30}] /. k_ /; MissingQ@ k -> 0 (* Michael De Vlieger, Jul 25 2016, Version 10.2 *)
-
a(n) = {my(k = 1); while (sigma(k*n) != sigma(k*n+1), k++); k;} \\ Michel Marcus, Jul 26 2016
A333949
Numbers k such that s(k) = s(k+1), where s(k) is the sum of recursive divisors of k (A333926).
Original entry on oeis.org
14, 206, 957, 1334, 1364, 1485, 1634, 2685, 2974, 4136, 4364, 14841, 20145, 24957, 33998, 36566, 42818, 64672, 74918, 79826, 79833, 84134, 86343, 92685, 109864, 111506, 122073, 138237, 147454, 159711, 162602, 166934, 187863, 190773, 193893, 201597, 274533, 288765
Offset: 1
14 is a term since A333926(14) = A333926(15) = 24.
-
recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^5], recDivSum[#] == recDivSum[# + 1] &]
A340713
Numbers k such that sigma(k+1) = 4 * sigma(k).
Original entry on oeis.org
37033919, 141162839, 264995639, 596672999, 606523679, 630777839, 791656319, 920424119, 1060332839, 1379454719, 1954690919, 3799661039, 4024838999, 4633959959, 5393988599, 5935994063, 8831231639, 9866482079, 11237657759, 11273710139, 12266364599, 14440498379, 14952625379
Offset: 1
A347603
Numbers k such that tau(k) = 2*tau(k-1) and sigma(k) = sigma(k-1), where tau(k) and sigma(k) are respectively the number and sum functions of the divisors of k.
Original entry on oeis.org
4365, 74919, 79827, 111507, 347739, 445875, 739557, 2168907, 4481986, 7263945, 7845387, 9309465, 10838247, 12290055, 12673095, 18151479, 22083215, 25645707, 39175955, 62634519, 69076995, 72794967, 80889207, 81166839, 87215967, 94682133, 107522943, 110768835, 119192283
Offset: 1
a(1) = 4365 because the divisors of 4365 are: 1, 3, 5, 9, 15, 45, 97, 291, 485, 873, 1455, 4365; so, tau(4365) = 12 and sigma(4365) = 7644. The divisors of 4364 are: 1, 2, 4, 1091, 2182, 4364; so, tau(4364) = 6 and sigma(4364) = 7644. Thus tau(4365) = 2*tau(4364), sigma(4365) = sigma(4364) and so 4365 is a term.
-
Select[Range[2, 10^6], DivisorSigma[0, #] == 2*DivisorSigma[0, # - 1] && DivisorSigma[1, #] == DivisorSigma[1, # - 1] &] (* Amiram Eldar, Sep 08 2021 *)
-
for(k=2,100000000,if(numdiv(k)==2*numdiv(k-1) && sigma(k)==sigma(k-1),print1(k", ")))
-
from sympy import divisor_count as tau, divisor_sigma as sigma
print([k for k in range(2, 10**6) if tau(k) == 2*tau(k-1) and sigma(k) == sigma(k-1)]) # Karl-Heinz Hofmann, Jan 15 2022
A172333
Numbers m such that m and m+22 have the same sum of divisors.
Original entry on oeis.org
57, 85, 213, 224, 354, 476, 568, 594, 812, 1218, 1235, 1316, 1484, 2103, 2470, 2492, 2643, 2840, 2996, 3836, 3978, 4026, 4544, 4810, 4844, 5012, 6125, 6356, 6524, 7364, 7532, 7648, 8876, 9272, 9328, 10098, 11107, 11797, 12572, 12594, 13412, 13640
Offset: 1
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 62, p. 22, Ellipses, Paris 2008.
- W. Sierpinski, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 110.
- Tomohiro Yamada, On equations sigma(n) = sigma(n+k) and phi(n) = phi(n+k), J. Comb. Number Theory 9 (2017), 15-21.
- Tomohiro Yamada, Table of n, a(n) for n = 1..46702 (All terms < 2^28, first 2000 terms from Muniru A Asiru)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972.
- G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio numerorum'; III: On the expression of a number as a sum of primes, Acta Math. 44 (1923), 1-70.
- Tomohiro Yamada, On equations sigma(n) = sigma(n+k) and phi(n) = phi(n+k)<, arXiv:1001.2511 [math.NT], 2010.
-
Filtered([1..13700],k->Sigma(k)=Sigma(k+22)); # Muniru A Asiru, Oct 20 2018
-
with(numtheory):for n from 1 to 20000 do;if sigma(n) = sigma(n+22) then print(n); else fi ; od;
-
isok(k) = sigma(k)==sigma(k+22); \\ Altug Alkan, Oct 03 2018
A175874
a(n) = least number such that sigma(a(n)+n)=n*sigma(a(n)).
Original entry on oeis.org
sigma(14+1)/sigma(14)=24/24=1, sigma(118+2)/sigma(118)=360/180=2,
sigma(3+3)/sigma(3)=12/4=3, sigma(4+4)/sigma(2)=12/3=4.
A192283
Sum of prime anti-divisors of n = sum of prime anti-divisors of n+1 with n > 1.
Original entry on oeis.org
237, 4019, 7401, 14178, 14339, 18435, 19146, 21405, 54562, 56348, 60125, 82967, 98447, 99347, 109157, 113391, 125333, 132096, 132386, 145063, 173399, 195213, 260288, 278271, 343848, 384169, 396813, 434375, 460758, 474105, 477707, 528845, 550400, 587211
Offset: 1
Anti-divisors of 7401 are 2, 6, 19, 41, 113, 131, 361, 779, 4934. The primes are 2, 19, 41, 113 and 131 whose sum is 306.
Anti-divisors of 7402 are 3, 4, 5, 7, 9, 15, 21, 35, 45, 47, 63, 105, 113, 131, 141, 235, 315, 329, 423, 705, 987, 1645, 2115, 2961, 4935. The primes are 3, 5, 7, 47, 113 and 131 whose sum is 306.
-
with(numtheory);
P:=proc(n)
local a,b,i,k;
b:=2;
for i from 4 to n do
a:=0;
for k from 2 to i-1 do
if abs((i mod k)- k/2) < 1 then if isprime(k) then a:=a+k; fi; fi;
od;
if a=b then print(i-1); fi;
b:=a;
od;
end:
P(200000);
A290303
Values of usigma(n) = usigma(n+1).
Original entry on oeis.org
24, 60, 72, 180, 1440, 2160, 1872, 2640, 2400, 3000, 2880, 3024, 4320, 4320, 4320, 5280, 5280, 7400, 8640, 10080, 10200, 11520, 11880, 11520, 11088, 12960, 12096, 14400, 25920, 21600, 26640, 34560, 25200, 40320, 34560, 36000, 51840, 60480, 63360, 60480, 65280
Offset: 1
-
usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[ #, n/# ] == 1 &]];a={}; u1=0; For[k=0, k<10^5, k++; u2=usigma[k]; If[u1==u2, a = AppendTo[a, u1]]; u1=u2]; a
A335071
Numbers m such that the delta(m) = abs(sigma(m+1)/(m+1) - sigma(m)/(m)) is smaller than delta(k) for all k < m.
Original entry on oeis.org
1, 2, 14, 21, 62, 81, 117, 206, 897, 957, 1334, 1634, 2685, 2974, 4364, 14282, 14841, 18873, 19358, 24957, 33998, 36566, 42818, 56564, 64665, 74918, 79826, 79833, 92685, 109214, 111506, 116937, 122073, 138237, 145215, 15511898, 16207345, 17714486, 17983593, 18077605
Offset: 1
The values of delta(k) for the first terms are 0.5, 0.166..., 0.114..., 0.112..., 0.102..., ...
-
ab[n_] := DivisorSigma[1, n]/n; dm = 2; ab1 = ab[1]; s = {}; Do[ab2 = ab[n]; d = Abs[ab2 - ab1]; If[d < dm, dm = d; AppendTo[s, n]]; ab1 = ab2, {n, 2, 10^5}]; s
-
lista(nn) = {my(d=oo, newd, lastm=1, ab=1); for (m=2, nn, nab = sigma(m)/m; if ((newd=abs(nab-ab)) < d, print1(m-1, ", "); d = newd;); ab = nab;);} \\ Michel Marcus, May 24 2020
A340715
Least positive number k such that sigma(k+1) = n * sigma(k).
Original entry on oeis.org
14, 5, 1, 37033919, 14182439039
Offset: 1
n | sigma(a(n)) | sigma(a(n)+1)
----+-------------+--------------
1 | 24 | 24
2 | 6 | 12
3 | 1 | 3
4 | 39940992 | 159763968
5 | 14182439040 | 70912195200
-
k = 1;n = 1;Print[While[DivisorSigma[1, k + 1] != n*DivisorSigma[1, k], k;k k+]; k] (* Robert P. P. McKone, Jan 17 2021 *)
-
{a(n) = my(k=1); while(sigma(k+1)!=n*sigma(k), k++); k}
Comments