cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 92 results. Next

A275337 Least k such that sigma(k*n) = sigma(k*n+1), or 0 if no such k exists.

Original entry on oeis.org

14, 7, 319, 341, 537
Offset: 1

Views

Author

Altug Alkan, Jul 24 2016

Keywords

Comments

Terms 6 through 30, with 0 signifying no such k <= 10^6: {0, 2, 220708, 1649, 23039, 87, 0, 6141, 1, 179, 110354, 873, 0, 86, 0, 5813, 62, 58, 0, 37497, 17149, 699, 0, 33, 0}. - Michael De Vlieger, Jul 25 2016
a(28) = 16806458, from A002961 b-file. - Michel Marcus, Jul 26 2016
If a(n) = 0, then a(m*n) = 0 for all m > 0. If c is a divisor of a(n), then a(c*n) = a(n)/c. - Chai Wah Wu, Jul 26 2016

Examples

			a(3) = 319 because sigma(319*3) = sigma(319*3+1) = 1440.
		

Crossrefs

Cf. A002961.

Programs

  • Mathematica
    Table[SelectFirst[Range[10^6], DivisorSigma[1, # n] == DivisorSigma[1, # n + 1] &], {n, 30}] /. k_ /; MissingQ@ k -> 0 (* Michael De Vlieger, Jul 25 2016, Version 10.2 *)
  • PARI
    a(n) = {my(k = 1); while (sigma(k*n) != sigma(k*n+1), k++); k;} \\ Michel Marcus, Jul 26 2016

A333949 Numbers k such that s(k) = s(k+1), where s(k) is the sum of recursive divisors of k (A333926).

Original entry on oeis.org

14, 206, 957, 1334, 1364, 1485, 1634, 2685, 2974, 4136, 4364, 14841, 20145, 24957, 33998, 36566, 42818, 64672, 74918, 79826, 79833, 84134, 86343, 92685, 109864, 111506, 122073, 138237, 147454, 159711, 162602, 166934, 187863, 190773, 193893, 201597, 274533, 288765
Offset: 1

Views

Author

Amiram Eldar, Apr 11 2020

Keywords

Examples

			14 is a term since A333926(14) = A333926(15) = 24.
		

Crossrefs

Cf. A333926.
Analogous sequences: A002961, A064115 (nonunitary), A064125 (unitary), A293183 (bi-unitary), A306985 (infinitary).

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^5], recDivSum[#] == recDivSum[# + 1] &]

A340713 Numbers k such that sigma(k+1) = 4 * sigma(k).

Original entry on oeis.org

37033919, 141162839, 264995639, 596672999, 606523679, 630777839, 791656319, 920424119, 1060332839, 1379454719, 1954690919, 3799661039, 4024838999, 4633959959, 5393988599, 5935994063, 8831231639, 9866482079, 11237657759, 11273710139, 12266364599, 14440498379, 14952625379
Offset: 1

Views

Author

Seiichi Manyama, Jan 17 2021

Keywords

Crossrefs

Programs

  • PARI
    isok(k) = sigma(k+1) == 4*sigma(k); \\ Michel Marcus, Jan 18 2021

Extensions

a(10)-a(23) from Seiichi Manyama using A058072 data, Jan 17 2021

A347603 Numbers k such that tau(k) = 2*tau(k-1) and sigma(k) = sigma(k-1), where tau(k) and sigma(k) are respectively the number and sum functions of the divisors of k.

Original entry on oeis.org

4365, 74919, 79827, 111507, 347739, 445875, 739557, 2168907, 4481986, 7263945, 7845387, 9309465, 10838247, 12290055, 12673095, 18151479, 22083215, 25645707, 39175955, 62634519, 69076995, 72794967, 80889207, 81166839, 87215967, 94682133, 107522943, 110768835, 119192283
Offset: 1

Views

Author

Claude H. R. Dequatre, Sep 08 2021

Keywords

Comments

Conjecture: the asymptotic density of terms is equal to 0 and this sequence is infinite.

Examples

			a(1) = 4365 because the divisors of 4365 are: 1, 3, 5, 9, 15, 45, 97, 291, 485, 873, 1455, 4365; so, tau(4365) = 12 and sigma(4365) = 7644. The divisors of 4364 are: 1, 2, 4, 1091, 2182, 4364; so, tau(4364) = 6 and sigma(4364) = 7644. Thus tau(4365) = 2*tau(4364), sigma(4365) = sigma(4364) and so 4365 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 10^6], DivisorSigma[0, #] == 2*DivisorSigma[0, # - 1] && DivisorSigma[1, #] == DivisorSigma[1, # - 1] &] (* Amiram Eldar, Sep 08 2021 *)
  • PARI
    for(k=2,100000000,if(numdiv(k)==2*numdiv(k-1) && sigma(k)==sigma(k-1),print1(k", ")))
    
  • Python
    from sympy import divisor_count as tau, divisor_sigma as sigma
    print([k for k in range(2, 10**6) if tau(k) == 2*tau(k-1) and sigma(k) == sigma(k-1)]) # Karl-Heinz Hofmann, Jan 15 2022

A172333 Numbers m such that m and m+22 have the same sum of divisors.

Original entry on oeis.org

57, 85, 213, 224, 354, 476, 568, 594, 812, 1218, 1235, 1316, 1484, 2103, 2470, 2492, 2643, 2840, 2996, 3836, 3978, 4026, 4544, 4810, 4844, 5012, 6125, 6356, 6524, 7364, 7532, 7648, 8876, 9272, 9328, 10098, 11107, 11797, 12572, 12594, 13412, 13640
Offset: 1

Views

Author

Michel Lagneau, Feb 01 2010

Keywords

Comments

If 3*k-1 and 14*k-1 are both prime with k>1, then n = 28*(3*k-1) belongs to this sequence. The number of such integers n <= x would be asymptotically cx/(log x)^2 for some constant c > 0 from the Hardy-Littlewood conjecture D in Partitio Numerorum. - Tomohiro Yamada, Oct 03 2018

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 62, p. 22, Ellipses, Paris 2008.
  • W. Sierpinski, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 110.
  • Tomohiro Yamada, On equations sigma(n) = sigma(n+k) and phi(n) = phi(n+k), J. Comb. Number Theory 9 (2017), 15-21.

Crossrefs

Programs

  • GAP
    Filtered([1..13700],k->Sigma(k)=Sigma(k+22)); # Muniru A Asiru, Oct 20 2018
  • Maple
    with(numtheory):for n from 1 to 20000 do;if sigma(n) = sigma(n+22) then print(n); else fi ; od;
  • PARI
    isok(k) = sigma(k)==sigma(k+22); \\ Altug Alkan, Oct 03 2018
    

A175874 a(n) = least number such that sigma(a(n)+n)=n*sigma(a(n)).

Original entry on oeis.org

14, 118, 3, 2
Offset: 1

Views

Author

Zak Seidov, Oct 06 2010

Keywords

Comments

a(1)= A002961(1).
a(2)= A175876(1), a(3)= A175875(1). - Zak Seidov, Jul 07 2013
Is n = 2 the only solution for sigma(n+4)=4*sigma(n)? - Zak Seidov, Jul 07 2013
A further solution to sigma(n+4)=4*sigma(n), and the terms a(5) and a(6), if they exist, they are all larger than 3*10^12. - Giovanni Resta, Jun 06 2016

Examples

			sigma(14+1)/sigma(14)=24/24=1, sigma(118+2)/sigma(118)=360/180=2,
sigma(3+3)/sigma(3)=12/4=3, sigma(4+4)/sigma(2)=12/3=4.
		

Crossrefs

Cf. A000203 sigma(n), A002961 sigma(n) = sigma(n+1).
Cf. A175875, A175876. - Zak Seidov, Jul 07 2013

A192283 Sum of prime anti-divisors of n = sum of prime anti-divisors of n+1 with n > 1.

Original entry on oeis.org

237, 4019, 7401, 14178, 14339, 18435, 19146, 21405, 54562, 56348, 60125, 82967, 98447, 99347, 109157, 113391, 125333, 132096, 132386, 145063, 173399, 195213, 260288, 278271, 343848, 384169, 396813, 434375, 460758, 474105, 477707, 528845, 550400, 587211
Offset: 1

Views

Author

Paolo P. Lava, Jul 27 2011

Keywords

Comments

Like A006145 but using anti-divisors.

Examples

			Anti-divisors of 7401 are 2, 6, 19, 41, 113, 131, 361, 779, 4934. The primes are 2, 19, 41, 113 and 131 whose sum is 306.
Anti-divisors of 7402 are 3, 4, 5, 7, 9, 15, 21, 35, 45, 47, 63, 105, 113, 131, 141, 235, 315, 329, 423, 705, 987, 1645, 2115, 2961, 4935. The primes are 3, 5, 7, 47, 113 and 131 whose sum is 306.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(n)
    local a,b,i,k;
    b:=2;
    for i from 4 to n do
      a:=0;
      for k from 2 to i-1 do
        if abs((i mod k)- k/2) < 1 then if isprime(k) then a:=a+k; fi; fi;
      od;
      if a=b then print(i-1); fi;
      b:=a;
    od;
    end:
    P(200000);

A290303 Values of usigma(n) = usigma(n+1).

Original entry on oeis.org

24, 60, 72, 180, 1440, 2160, 1872, 2640, 2400, 3000, 2880, 3024, 4320, 4320, 4320, 5280, 5280, 7400, 8640, 10080, 10200, 11520, 11880, 11520, 11088, 12960, 12096, 14400, 25920, 21600, 26640, 34560, 25200, 40320, 34560, 36000, 51840, 60480, 63360, 60480, 65280
Offset: 1

Views

Author

Amiram Eldar, Jul 26 2017

Keywords

Comments

The sum of unitary divisors of numbers n such that n and n+1 have the same sum.
The unitary version of A053215.

Crossrefs

Programs

  • Mathematica
    usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[ #, n/# ] == 1 &]];a={}; u1=0; For[k=0, k<10^5, k++; u2=usigma[k]; If[u1==u2, a = AppendTo[a, u1]]; u1=u2]; a

Formula

a(n) = A034448(A064125(n)).

A335071 Numbers m such that the delta(m) = abs(sigma(m+1)/(m+1) - sigma(m)/(m)) is smaller than delta(k) for all k < m.

Original entry on oeis.org

1, 2, 14, 21, 62, 81, 117, 206, 897, 957, 1334, 1634, 2685, 2974, 4364, 14282, 14841, 18873, 19358, 24957, 33998, 36566, 42818, 56564, 64665, 74918, 79826, 79833, 92685, 109214, 111506, 116937, 122073, 138237, 145215, 15511898, 16207345, 17714486, 17983593, 18077605
Offset: 1

Views

Author

Amiram Eldar, May 22 2020

Keywords

Comments

Can two consecutive numbers have the same abundancy: sigma(m)/m = sigma(m+1)/(m+1)? If yes, then this sequence is finite.
There is no disproof of existence, but this would require both of the consecutive numbers to be k-perfect with the same k >= 2, and it is conjectured that such numbers are multiples of k!. It is very unlikely that an odd k-perfect number will ever be found, and even much less probable that it will be just next to an even k-perfect number. - M. F. Hasler, Jun 06 2020

Examples

			The values of delta(k) for the first terms are 0.5, 0.166..., 0.114..., 0.112..., 0.102..., ...
		

Crossrefs

Programs

  • Mathematica
    ab[n_] := DivisorSigma[1, n]/n; dm = 2; ab1 = ab[1]; s = {}; Do[ab2 = ab[n]; d = Abs[ab2 - ab1]; If[d < dm, dm = d; AppendTo[s, n]]; ab1 = ab2, {n, 2, 10^5}]; s
  • PARI
    lista(nn) = {my(d=oo, newd, lastm=1, ab=1); for (m=2, nn, nab = sigma(m)/m; if ((newd=abs(nab-ab)) < d, print1(m-1, ", "); d = newd;); ab = nab;);} \\ Michel Marcus, May 24 2020

A340715 Least positive number k such that sigma(k+1) = n * sigma(k).

Original entry on oeis.org

14, 5, 1, 37033919, 14182439039
Offset: 1

Views

Author

Seiichi Manyama, Jan 17 2021

Keywords

Examples

			  n | sigma(a(n)) | sigma(a(n)+1)
----+-------------+--------------
  1 |          24 |            24
  2 |           6 |            12
  3 |           1 |             3
  4 |    39940992 |     159763968
  5 | 14182439040 |   70912195200
		

Crossrefs

Programs

  • Mathematica
    k = 1;n = 1;Print[While[DivisorSigma[1, k + 1] != n*DivisorSigma[1, k], k;k k+]; k] (* Robert P. P. McKone, Jan 17 2021 *)
  • PARI
    {a(n) = my(k=1); while(sigma(k+1)!=n*sigma(k), k++); k}
Previous Showing 51-60 of 92 results. Next