cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 55 results. Next

A369470 a(n) = number of integer solutions to 1 <= x1 <= x2 <= ... <= xn to 1/x1 + ... + 1/xn = (1 - 1/x1) * ... * (1 - 1/xn).

Original entry on oeis.org

1, 1, 2, 35, 455, 13624, 1176579
Offset: 1

Views

Author

Max Alekseyev, Jan 23 2024

Keywords

Comments

For any n, a(n) >= A369469(n) >= 1 (see A369607).

Crossrefs

A181700 Smallest positive integer that can be represented as the sum of n of its distinct divisors in the maximum number of ways, or a(n)=0 if no such number exists.

Original entry on oeis.org

1, 0, 6, 2520, 48348686786400, 10543141534556403817127800577537146514577188497111149855093902265479066128013109211427715400552367011213513440000
Offset: 1

Views

Author

William Rex Marshall, Nov 06 2010

Keywords

Comments

A006585(n) gives the number of representations of a(n) as the sum of n of its distinct divisors.
For n >= 4, a(n) appears to coincide with A357765(n). - Max Alekseyev, Oct 09 2022

Examples

			For n=4, a(4)=2520 has the six solutions: 60+360+840+1260, 105+315+840+1260, 126+504+630+1260, 140+280+840+1260, 168+252+840+1260, 210+420+630+1260.
		

Crossrefs

Formula

For n >= 3, a(n) = LCM of all denominators of Egyptian fractions enumerated by A006585(n). - Max Alekseyev, Oct 12 2022

Extensions

Edited by Max Alekseyev, Oct 09 2022

A316890 Heinz numbers of integer partitions into relatively prime parts whose reciprocal sum is 1.

Original entry on oeis.org

2, 195, 3185, 6475, 10527, 16401, 20445, 20535, 21045, 25365, 46155, 164255, 171941, 218855, 228085, 267883, 312785, 333925, 333935, 335405, 343735, 355355, 414295, 442975, 474513, 527425, 549575, 607475, 633777, 691041, 711321, 722425, 753865, 804837, 822783
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Includes 29888089, which is the first perfect power in the sequence and is absent from A316888.

Crossrefs

Programs

  • Mathematica
    Select[Range[2,100000],And[GCD@@PrimePi/@FactorInteger[#][[All,1]]==1,Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]==1]&]

A316898 Number of integer partitions of n into relatively prime parts whose reciprocal sum is the reciprocal of an integer.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 4, 1, 3, 1, 1, 1, 3, 1, 8, 3, 1, 1, 9, 2, 11, 3, 3, 3, 5, 2, 7, 6, 4, 7, 12, 5, 14, 6, 11, 12, 25, 11, 27, 17, 15, 19, 25, 9, 37, 20, 21, 19, 31, 19, 38, 33, 26, 37, 38, 36, 64, 39, 46, 53, 63, 39, 80, 63, 65, 66, 94, 59, 105
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
Records: 1, 2, 4, 8, 9, 11, 12, 14, 25, 27, 37, 38, 64, 80, 94, 105, 119, 154, 184, ..., . - Robert G. Wilson v, Jul 18 2018

Examples

			The a(37) = 8 partitions: (20,12,5), (15,12,10), (24,8,3,2), (15,10,6,6), (20,5,4,4,4), (15,10,6,3,3), (14,7,7,7,2), (10,10,10,5,2).
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1, s = 0, lmt = 1 + PartitionsP@ n}, While[k < lmt, s += Length[ Select[ IntegerPartitions[n, {k, k}], GCD @@ # == 1 && IntegerQ[1/Sum[1/m, {m, #}]] &]]; k++]; s]; Array[f, 50] (* slightly modified by Robert G. Wilson v, Jul 17 2018 *) (* or *)
    ric[n_,p_,s_] := If[n==0, If[IntegerQ[1/s] && GCD @@ p == 1, c++], Do[ If[s + 1/i <= 1, ric[n-i, Append[p, i], s + 1/i]], {i, Min[p[[-1]], n], 1, -1}]]; a[n_] := (c=0; Do[ric[n-j, {j}, 1/j], {j, n}]; c); Array[a, 50] (* Giovanni Resta, Jul 18 2018 *)

Extensions

a(51)-a(91) from Robert G. Wilson v, Jul 17 2018

A325703 If n = prime(i_1)^j_1 * ... * prime(i_k)^j_k, then a(n) is the denominator of the reciprocal factorial sum j_1/i_1! + ... + j_k/i_k!.

Original entry on oeis.org

1, 1, 2, 1, 6, 2, 24, 1, 1, 6, 120, 2, 720, 24, 3, 1, 5040, 1, 40320, 6, 24, 120, 362880, 2, 3, 720, 2, 24, 3628800, 3, 39916800, 1, 120, 5040, 24, 1, 479001600, 40320, 720, 6, 6227020800, 24, 87178291200, 120, 6, 362880, 1307674368000, 2, 12, 3, 5040, 720
Offset: 1

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

Alternatively, if n = prime(i_1) * ... * prime(i_k), then a(n) is the denominator of 1/i_1! + ... + 1/i_k!.

Crossrefs

Programs

  • Maple
    f:= proc(n) local F,t;
        F:= ifactors(n)[2];
        denom(add(t[2]/numtheory:-pi(t[1])!,t=F))
    end proc:
    map(f, [$1..100]); # Robert Israel, Oct 13 2024
  • Mathematica
    Table[Total[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>k/PrimePi[p]!]],{n,100}]//Denominator

Formula

a(n) = A318574(A325709(n)).

A348536 Number of partitions of n into 3 parts that divide n.

Original entry on oeis.org

0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 21 2021

Keywords

Comments

From David A. Corneth, Oct 08 2022: (Start)
Proof of formula: suppose we have a partition d_1 + d_2 + d_3 = n where 0 < d_1 <= d_2 <= d_3 and d_1 | n, d_2 | n and d_3 | n.
Then let m_i * d_i = n for i in (1, 2, 3).
Dividing d_1 + d_2 + d_3 = n by n gives d_1/n + d_2/n + d_3/n = n/n, i.e., 1/m_1 + 1/m_2 + 1/m_3 = 1. There are 3 solutions to that equation namely (m_1, m_2, m_3) in {(2, 4, 4), (2, 3, 6), (3, 3, 3)}. The lcm of these numbers is 12 so the sequence is periodic with a period of 12 and then calculating the first 12 terms defines the sequence.
Alternative name: number of divisors of n from {3, 4, 6}. (End)

Examples

			a(12) = 3 via 2 + 4 + 6 = 3 + 3 + 6 = 4 + 4 + 4. - _David A. Corneth_, Oct 08 2022
		

Crossrefs

Programs

  • Mathematica
    Block[{c}, c[n_] := 1 - Ceiling[n] + Floor[n]; Array[Sum[Sum[c[#/j]*c[#/i]*c[#/(# - i - j)], {i, j, Floor[(# - j)/2]} ], {j, Floor[#/3]} ] &, 105]] (* Michael De Vlieger, Oct 21 2021 *)
    Table[Count[IntegerPartitions[n,{3}],?(Mod[n,#]=={0,0,0}&)],{n,100}] (* _Harvey P. Dale, Apr 07 2025 *)
  • PARI
    a(n) = [0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3][(n-1)%12 + 1] \\ David A. Corneth, Oct 08 2022
    
  • PARI
    a(n) = { my(d = divisors(n), res = 0); d = d[^#d]; forvec(x = vector(2, i, [1, #d]), s = d[x[1]] + d[x[2]]; if(n - s >= d[x[2]], if(n % (n - s) == 0, print([d[x[1]], d[x[2]], n-s]); res++ ) ) , 1 ); res } \\ David A. Corneth, Oct 08 2022

Formula

a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} c(n/j) * c(n/i) * c(n/(n-i-j)), where c(n) = 1 - ceiling(n) + floor(n).
a(n + 12) = a(n) where n >= 1. - David A. Corneth, Oct 08 2022

A130691 Number of distinct unit fractions required to sum to n when using the "splitting algorithm".

Original entry on oeis.org

1, 4, 16, 172, 4331, 232388, 4865293065, 40149851165417480, 18146043304242768613568943751063, 5522398183372890742378015411585945396419106762128927
Offset: 1

Views

Author

Hugo van der Sanden, Jun 10 2010, with contributions from Franklin T. Adams-Watters and Robert Gerbicz

Keywords

Comments

The splitting algorithm decomposes a rational p/q to distinct unit fractions by first creating the multiset with p copies of 1/q, then repeatedly replacing a duplicated element 1/q' with the pair 1/(q'+1), 1/q'(q'+1) until no duplicates remain.

Examples

			For n=2, the algorithm generates the multisets {1/1, 1/1}, {1/1, 1/2, 1/2}, {1/1, 1/2, 1/3, 1/6}. The final multiset has no duplicate elements, so the algorithm terminates, and has 4 elements, so a(2)=4.
		

Crossrefs

Cf. A002966. - Robert G. Wilson v, Jun 10 2010

A185074 Number of representations of n in the form sum(i=1..n, c(i)/i ), where each of the c(i)'s is in {0,1,...,n}.

Original entry on oeis.org

1, 2, 4, 16, 36, 447, 1274, 9443, 54094, 995169, 3013040, 79403971, 244277081, 5853252222, 171545158710, 2586069434760, 8747524457442, 290539678831816, 1002826545775653, 37782799964911391, 1405277934671848125, 53429557586727235246, 189496067102901557686
Offset: 1

Views

Author

John W. Layman, Mar 02 2012

Keywords

Examples

			For n=3, 1/1+2/2+3/3 = 2/1+0/2+3/3 = 2/1+2/2+0/3 = 3/1+0/2+0/3 = 3 and no other sums of the required type give 3, so a(3)=4.  For n=4, 0/1+4/2+3/3+4/4 and 15 other sums of the required type give 4, so a(4)=16.
		

Crossrefs

Programs

  • Maple
    b:= proc(r, i, n) option remember;
          `if`(r=0, 1, `if`(i>n, 0,
          add(b(r-j/i, i+1, n), j=0..min(n, r*i))))
        end:
    a:= n-> b(n, 1, n):
    seq(a(n), n=1..10);  # Alois P. Heinz, Mar 06 2012
  • Mathematica
    b[r_, i_, n_] := b[r, i, n] = If[r == 0, 1, If[i>n, 0, Sum[b[r-j/i, i+1, n], {j, 0, Min[n, r*i]}]]]; a[n_] := b[n, 1, n]; Table[Print[a[n]]; a[n], {n, 1, 13}] (* Jean-François Alcover, Feb 27 2014, after Alois P. Heinz *)
  • PARI
    A185074(n,i=1,m)={n || return(1); m || m=n; i>m & return; sum(j=0,min(m, n*i),A185074(n-j/i, i+1, m))} \\ - M. F. Hasler, Mar 07 2012
    
  • PARI
    /* version with memoization - seems not faster */ R185074=Set("[0]"); A185074(n,i=1,m)={n || return(1); m || m=n; i>m & return; my(t=eval(R185074[setsearch(R185074,[n,i,m],1)-1])); t[1]==n & t[2]==i & t[3]==m & return(t[4]); t=sum(j=0,min(m, n*i),A185074(n-j/i, i+1, m)); R185074=setunion(R185074,Set([[n,i,m,t]])); t} \\ - M. F. Hasler, Mar 07 2012

Extensions

a(7)-a(10) from R. J. Mathar, a(11)-a(13) from Alois P. Heinz, Mar 06 2012
a(14) from Alois P. Heinz, Sep 27 2014
a(15)-a(23) from Hiroaki Yamanouchi, Oct 03 2014

A316889 Heinz numbers of aperiodic integer partitions whose reciprocal sum is 1.

Original entry on oeis.org

2, 147, 195, 3185, 6475, 6591, 7581, 10101, 10527, 16401, 20445, 20535, 21045, 25365, 46155, 107653, 123823, 142805, 164255, 164983, 171941, 218855, 228085, 267883, 304175, 312785, 333925, 333935, 335405, 343735, 355355, 390963, 414295, 442975, 444925, 455975
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A partition is aperiodic if its multiplicities are relatively prime.

Examples

			Sequence of partitions whose Heinz numbers belong to the sequence begins: (1), (4,4,2), (6,3,2), (6,4,4,3), (12,4,3,3), (6,6,6,2), (8,8,4,2), (12,6,4,2), (10,5,5,2), (20,5,4,2), (15,10,3,2), (12,12,3,2), (18,9,3,2), (24,8,3,2), (42,7,3,2).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,100000],And[GCD@@FactorInteger[#][[All,2]]==1,Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]==1]&]

A316891 Number of aperiodic integer partitions of n into relatively prime parts whose reciprocal sum is an integer.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 2, 1, 5, 2, 7, 4, 7, 6, 13, 7, 18, 12, 20, 17, 32, 20, 39, 31, 47, 45, 74, 56, 96, 83, 109, 105, 151, 130, 199, 183, 234, 232, 319, 286, 404, 386, 473, 488, 638, 599, 782, 767, 931, 960, 1197, 1165, 1465, 1477, 1747, 1814, 2212, 2196
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
A partition is aperiodic if its multiplicities are relatively prime.

Examples

			The a(17) = 13 partitions:
(6443),
(44441),
(3332222), (6322211),
(44222111),
(222222221), (333221111), (632111111),
(4421111111),
(22222211111), (33311111111),
(2222111111111),
(221111111111111).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[GCD@@#==1,GCD@@Length/@Split[#]==1,IntegerQ[Sum[1/m,{m,#}]]]&]],{n,50}]

Extensions

a(51)-a(60) from Alois P. Heinz, Jul 18 2018
Previous Showing 31-40 of 55 results. Next