cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 97 results. Next

A176995 Numbers that can be written as (m + sum of digits of m) for some m.

Original entry on oeis.org

2, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 21 2011

Keywords

Comments

The asymptotic density of this sequence is approximately 0.9022222 (Guaraldo, 1978). - Amiram Eldar, Nov 22 2020

Examples

			a(5) = 10 = 5 + (5);
a(87) = 100 = 86 + (8+6);
a(898) = 1000 = 977 + (9+7+7);
a(9017) = 10000 = 9968 + (9+9+6+8).
		

References

  • V. S. Joshi, A note on self-numbers. Volume dedicated to the memory of V. Ramaswami Aiyar, Math. Student, Vol. 39 (1971), pp. 327-328. MR0330032 (48 #8371).

Crossrefs

Complement of A003052, range of A062028.

Programs

  • Haskell
    a176995 n = a176995_list !! (n-1)
    a176995_list = filter ((> 0) . a230093) [1..]
    -- Reinhard Zumkeller, Oct 11 2013, Aug 21 2011
    
  • Mathematica
    Select[Union[Table[n + Total[IntegerDigits[n]], {n, 77}]], # <= 77 &] (* Jayanta Basu, Jul 27 2013 *)
  • PARI
    is_A003052(n)={for(i=1, min(n\2, 9*#digits(n)), sumdigits(n-i)==i && return); n} \\ from A003052
    isok(n) = ! is_A003052(n) \\ Michel Marcus, Aug 20 2020

Formula

A230093(a(n)) > 0. - Reinhard Zumkeller, Oct 11 2013

A006378 Prime self (or Colombian) numbers: primes not expressible as the sum of an integer and its digit sum.

Original entry on oeis.org

3, 5, 7, 31, 53, 97, 211, 233, 277, 367, 389, 457, 479, 547, 569, 613, 659, 727, 839, 883, 929, 1021, 1087, 1109, 1223, 1289, 1447, 1559, 1627, 1693, 1783, 1873, 2099, 2213, 2347, 2437, 2459, 2503, 2549, 2593, 2617, 2683, 2729, 2819, 2953, 3023, 3067
Offset: 1

Views

Author

Keywords

References

  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 116.
  • D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately Printed, 311 Devlali Camp, Devlali, India, 1963.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers (Part V). 311 Devlali Camp, Devlali, India, 1967.
  • Jeffrey Shallit, personal communication c. 1999.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006378 n = a006378_list !! (n-1)
    a006378_list = map a000040 $ filter ((== 0) . a107740) [1..]
    -- Reinhard Zumkeller, Sep 27 2014
    
  • Mathematica
    With[{nn=3200},Complement[Prime[Range[PrimePi[nn]]],Table[n+Total[ IntegerDigits[n]],{n,nn}]]] (* Harvey P. Dale, Dec 30 2011 *)
  • PARI
    select( is_A006378(n)=is_A003052(n)&&isprime(n), primes([1,3000])) \\ M. F. Hasler, Nov 08 2018

Formula

A107740(A049084(a(n))) = 0. [Corrected by Reinhard Zumkeller, Sep 27 2014]

A006507 a(n+1) = a(n) + sum of digits of a(n), with a(1)=7.

Original entry on oeis.org

7, 14, 19, 29, 40, 44, 52, 59, 73, 83, 94, 107, 115, 122, 127, 137, 148, 161, 169, 185, 199, 218, 229, 242, 250, 257, 271, 281, 292, 305, 313, 320, 325, 335, 346, 359, 376, 392, 406, 416, 427, 440, 448, 464, 478, 497, 517, 530, 538, 554, 568
Offset: 1

Views

Author

Keywords

Comments

a(n) = A004207(n+4) for n > 11. - Reinhard Zumkeller, Oct 14 2013

References

  • Editorial Note, Popular Computing (Calabasas, CA), Vol. 4 (No. 37, Apr 1976), p. 12.
  • GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 36.
  • D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately Printed, 311 Devlali Camp, Devlali, India, 1963.
  • Jeffrey Shallit, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006507 n = a006507_list !! (n-1)
    a006507_list = iterate a062028 7  -- Reinhard Zumkeller, Oct 14 2013
  • Mathematica
    NestList[#+Total[IntegerDigits[#]]&,7,50] (* Harvey P. Dale, Jan 25 2021 *)

Formula

a(n) = A062028(a(n-1)) for n > 1. - Reinhard Zumkeller, Oct 14 2013

Extensions

More terms from Robert G. Wilson v

A006064 Smallest junction number with n generators.

Original entry on oeis.org

0, 101, 10000000000001, 1000000000000000000000102
Offset: 1

Views

Author

Keywords

Comments

Strictly speaking, a junction number is a number n with more than one solution to x+digitsum(x) = n. However, it seems best to start this sequence with n=0, for which there is just one solution, x=0. - N. J. A. Sloane, Oct 31 2013.
a(3) = 10^13 + 1 was found by Narasinga Rao, who reports that Kaprekar verified that it is the smallest term. No details of Kaprekar's proof were given.
a(4) = 10^24 + 102 was conjectured by Narasinga Rao.
a(5) = 10^1111111111124 + 102. - Conjectured by Narasinga Rao, confirmed by Max Alekseyev and N. J. A. Sloane.
a(6) = 10^2222222222224 + 10000000000002. - Max Alekseyev
a(7) = 10^( (10^24 + 10^13 + 115) / 9 ) + 10^13 + 2. - Max Alekseyev
a(8) = 10^( (2*10^24 + 214)/9 ) + 10^24 + 103. - Max Alekseyev

Examples

			a(2) = 101 since 101 is the smallest number with two generators: 101 = A062028(91) = A062028(100).
a(4) = 10^24 + 102 = 1000000000000000000000102 has exactly four inverses w.r.t. A062028, namely 999999999999999999999893, 999999999999999999999902, 1000000000000000000000091 and 1000000000000000000000100.
		

References

  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 116.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately printed, 311 Devlali Camp, Devlali, India, 1963.
  • Narasinga Rao, A. On a technique for obtaining numbers with a multiplicity of generators. Math. Student 34 1966 79--84 (1967). MR0229573 (37 #5147)
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003052, A230093, A230100, A230303, A230857 (highest power of 10).
Smallest number m such that u + (sum of base-b digits of u) = m has exactly n solutions, for bases 2 through 10: A230303, A230640, A230638, A230867, A238840, A238841, A238842, A238843, A006064.

Formula

a(n) = the smallest m such that there are exactly n solutions to A062028(x)=m.

Extensions

Edited, a(5)-a(6) added by Max Alekseyev, Jun 01 2011
a(1) added, a(5) corrected, a(7)-a(8) added by Max Alekseyev, Oct 26 2013

A336826 Bogotá numbers: numbers k such that k = m*p(m) where p(m) is the digital product of m.

Original entry on oeis.org

0, 1, 4, 9, 11, 16, 24, 25, 36, 39, 42, 49, 56, 64, 75, 81, 88, 93, 96, 111, 119, 138, 144, 164, 171, 192, 224, 242, 250, 255, 297, 312, 336, 339, 366, 378, 393, 408, 422, 448, 456, 488, 497, 516, 520, 522, 525, 564, 575, 648, 696, 704, 738, 744, 755, 777, 792
Offset: 1

Views

Author

Sean A. Irvine, Aug 05 2020

Keywords

Comments

Named Bogotá numbers by Tomás Uribe and Juan Pablo Fernández based on similarity of the construction to the Colombian numbers (A003052).
Some questions about these numbers:
(i) Some Bogotá numbers occur in pairs (such as 24 and 25). Are there infinitely many such pairs?
(ii) More generally, can arbitrarily long sets of consecutive numbers be found all of which are Bogotá numbers?
(iii) Can the gap between two consecutive Bogotá numbers be arbitrarily large? Answer: Yes.
From David A. Corneth, Aug 06 2020: (Start)
The only primes in this sequence are A004022.
To see if a number is a Bogotá number, we only have to look at its 7-smooth divisors. Proof: If a number k is a Bogotá number then k = m*p(m) where p(m) is 7-smooth as it's a product of digits. Furthermore, if k = m*p(m) then p(m) | k. Q.e.d. Below is an example using this idea.
To find Bogotá numbers k up to N we can make a list of 7-smooth numbers up to sqrt(N) and list the factorizations into single-digit numbers of each of these 7-smooth numbers that when concatenated give m such that m * p(m) = k where p(m) is that 7-smooth number.
For example, 10 is a 7-smooth number. Its factorizations into single-digit numbers are 2*5, 5*2, 1*2*5 and so on. This tells us that 10*25 = 250, 10*52 = 520, 10*125 = 1250 all are Bogotá numbers.
Similarily we can find odd Bogotá numbers to then find consecutive Bogotá numbers (See A336864). (End)

Examples

			From _David A. Corneth_, Aug 06 2020: (Start)
520 is a term because 52 * p(52) = 52 * 10 = 520.
Example using we only have to look at 7-smooth divisors:
520 is a term as its 7-smooth divisors d are 1, 2, 4, 5, 8, 10, 20, 40. values 520/d are 520, 260, 130, 104, 65, 52, 26, 13 of which 52 * (5*2) = 520 where (5*2) are the products of 52. (End)
		

Crossrefs

Programs

  • PARI
    f(n) = vecprod(digits(n))*n; \\ A098736
    isok(n) = my(k=0); for (k=0, n, if (f(k) == n, return(1))); \\ Michel Marcus, Aug 06 2020
    
  • PARI
    is(n) = { my(f = factor(n), s7 = 1, d, sl = sqrtint(n)); for(i = 1, #f~, if(f[i, 1] > 7, break ); s7 *= f[i, 1]^f[i, 2]; ); d = divisors(s7); for(i = 1, #d, if(d[i] > sl, return(0)); if(n/d[i] * vecprod(digits(n/d[i])) == n, return(1); ) ); 0 } \\ David A. Corneth, Aug 06 2020

A230099 a(n) = n + (product of digits of n).

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 50, 56, 62, 68, 74, 80, 86, 92, 98, 104, 60, 67, 74, 81, 88, 95, 102, 109, 116, 123, 70, 78, 86, 94, 102, 110, 118, 126
Offset: 0

Views

Author

N. J. A. Sloane, Oct 12 2013

Keywords

Comments

A230099, A063114, A098736, A230101 are analogs of A092391 and A062028.

Crossrefs

Programs

  • Haskell
    a230099 n = a007954 n + n  -- Reinhard Zumkeller, Oct 13 2013
    
  • Maple
    with transforms; [seq(n+digprod(n), n=0..200)];
  • PARI
    a(n) = if (n, n + vecprod(digits(n)), 0); \\ Michel Marcus, Dec 18 2018
    
  • Python
    from math import prod
    def a(n): return n + prod(map(int, str(n)))
    print([a(n) for n in range(78)]) # Michael S. Branicky, Jan 09 2023

Formula

a(n) = n iff n contains a digit 0 (A011540). - Bernard Schott, Jul 31 2023

A230641 a(n) = n + (sum of digits in base-3 representation of n).

Original entry on oeis.org

0, 2, 4, 4, 6, 8, 8, 10, 12, 10, 12, 14, 14, 16, 18, 18, 20, 22, 20, 22, 24, 24, 26, 28, 28, 30, 32, 28, 30, 32, 32, 34, 36, 36, 38, 40, 38, 40, 42, 42, 44, 46, 46, 48, 50, 48, 50, 52, 52, 54, 56, 56, 58, 60, 56, 58, 60, 60, 62, 64, 64, 66, 68, 66, 68, 70, 70, 72, 74, 74, 76, 78, 76, 78, 80, 80, 82, 84, 84, 86, 88, 82
Offset: 0

Views

Author

N. J. A. Sloane, Oct 31 2013

Keywords

Comments

The image of this sequence is the set of nonnegative even numbers (A005843). Joshi (1973) proved that the sequence of base-q self numbers (analogous to A003052) is the sequence of odd numbers (A005408) for all odd q. - Amiram Eldar, Nov 28 2020

References

  • V. S. Joshi, Ph.D. dissertation, Gujarat Univ., Ahmedabad (India), October, 1973.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384-386.

Crossrefs

Related base-3 sequences: A053735, A134451, A230641, A230642, A230643, A230853, A230854, A230855, A230856, A230639, A230640, A010063 (trajectory of 1)

Programs

  • Haskell
    a230641 n = a053735 n + n  -- Reinhard Zumkeller, May 19 2015
  • Mathematica
    Table[n + Plus @@ IntegerDigits[n, 3], {n, 0, 100}] (* Amiram Eldar, Nov 28 2020 *)

Formula

a(n) = n + A053735(n). - Amiram Eldar, Nov 28 2020

A010065 a(n+1) = a(n) + sum of digits in base 4 representation of a(n), with a(0) = 1.

Original entry on oeis.org

1, 2, 4, 5, 7, 11, 16, 17, 19, 23, 28, 32, 34, 38, 43, 50, 55, 62, 70, 74, 79, 86, 91, 98, 103, 110, 118, 125, 133, 137, 142, 149, 154, 161, 166, 173, 181, 188, 196, 200, 205, 212, 217, 224, 229, 236, 244, 251, 262, 266, 271, 278, 283, 290, 295
Offset: 0

Views

Author

Keywords

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.24.

Crossrefs

Related base-4 sequences: A053737, A230631, A230632, A010064, A230633, A230634, A230635, A230636, A230637, A230638, A010065 (trajectory of 1)

Programs

  • Haskell
    a010065 n = a010065_list !! n
    a010065_list = iterate a230631 1  -- Reinhard Zumkeller, Mar 20 2015

Formula

a(n+1) = A230631(a(n)). - Reinhard Zumkeller, Mar 20 2015

Extensions

More terms from Neven Juric, Apr 11 2008

A016096 a(n+1) = a(n) + sum of its digits, with a(1) = 9.

Original entry on oeis.org

9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 117, 126, 135, 144, 153, 162, 171, 180, 189, 207, 216, 225, 234, 243, 252, 261, 270, 279, 297, 315, 324, 333, 342, 351, 360, 369, 387, 405, 414, 423, 432, 441, 450, 459, 477, 495, 513, 522, 531, 540
Offset: 1

Views

Author

Keywords

References

  • D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately printed, 311 Devlali Camp, Devlali, India, 1963.

Crossrefs

Programs

  • Haskell
    a016096 n = a016096_list !! (n-1)
    a016096_list = iterate a062028 9  -- Reinhard Zumkeller, Oct 14 2013
    
  • Python
    from itertools import islice
    def A016096_gen(): # generator of terms
        a = 9
        while True:
            yield a
            a += sum(int(d) for d in str(a))
    A016096_list = list(islice(A016096_gen(),20)) # Chai Wah Wu, Mar 29 2022

Formula

a(n) = A062028(a(n-1)) for n > 1. - Reinhard Zumkeller, Oct 14 2013

A010067 Base 6 self or Colombian numbers (not of form k + sum of base 6 digits of k).

Original entry on oeis.org

1, 3, 5, 12, 19, 26, 33, 40, 42, 49, 56, 63, 70, 77, 79, 86, 93, 100, 107, 114, 116, 123, 130, 137, 144, 151, 153, 160, 167, 174, 181, 188, 190, 197, 204, 211, 218, 229, 236, 243, 250, 257, 259, 266, 273, 280, 287, 294, 296, 303, 310, 317, 324, 331, 333, 340, 347
Offset: 1

Views

Author

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.24, pp. 179-180.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384-386.

Crossrefs

Programs

  • Mathematica
    s[n_] := n + Plus @@ IntegerDigits[n, 6]; m = 350; Complement[Range[m], Array[s, m]] (* Amiram Eldar, Nov 28 2020 *)

Extensions

More terms from Amiram Eldar, Nov 28 2020
Previous Showing 21-30 of 97 results. Next