cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 97 results. Next

A010070 Base 8 self or Colombian numbers (not of form k + sum of base 8 digits of k).

Original entry on oeis.org

1, 3, 5, 7, 16, 25, 34, 43, 52, 61, 70, 72, 81, 90, 99, 108, 117, 126, 135, 137, 146, 155, 164, 173, 182, 191, 200, 202, 211, 220, 229, 238, 247, 256, 265, 267, 276, 285, 294, 303, 312, 321, 330, 332, 341, 350, 359, 368, 377, 386, 395, 397, 406, 415, 424, 433
Offset: 1

Views

Author

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.24, pp. 179-180.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384-386.

Crossrefs

Programs

  • Mathematica
    s[n_] := n + Plus @@ IntegerDigits[n, 8]; m = 500; Complement[Range[m], Array[s, m]] (* Amiram Eldar, Nov 28 2020 *)

Extensions

More terms from Amiram Eldar, Nov 28 2020

A230624 Numbers k with property that for every base b >= 2, there is a number m such that m+s(m) = k, where s(m) = sum of digits in the base-b expansion of m.

Original entry on oeis.org

0, 2, 10, 14, 22, 38, 62, 94, 158, 206, 318, 382, 478, 606, 766, 958, 1022, 1534, 1662, 1726, 1790, 1918, 1982, 2238, 2622, 2686, 3006, 3262, 3582, 3966, 4734, 5118, 5374, 5758, 5886, 6782, 8830, 9342, 9470, 9598, 10878, 12926, 13182, 13438, 14718, 18686, 22526
Offset: 1

Views

Author

N. J. A. Sloane, Oct 27 2013

Keywords

Comments

If k is a positive term then k is even (or else k has no generator in base k+1) but not a multiple of 4 (or else k has no generator in base k/2). - David Applegate, Jan 09 2022. See A349821 and A350607 for the k/2 and (k-2)/4 sequences.
It is not known if this sequence is infinite.
The eight terms 10 through 206 are all twice primes (cf. A349820).

Examples

			10 is a member because in base 2, 7=111, 7+3=10; in base 3, 7=21, 7+3=10; in base 4, 8=20, 8+2=10; in base 5, 7=12, 7+3=10; and in bases b >= 6, 5+5=10.
		

Crossrefs

For first differences see A349823.
This is the limiting row of A350601.

Extensions

More terms from Lars Blomberg, Oct 12 2015
More terms from David Applegate, Jan 02 2022

A053816 Another version of the Kaprekar numbers (A006886): n such that n = q+r and n^2 = q*10^m+r, for some m >= 1, q >= 0 and 0 <= r < 10^m, with n != 10^a, a >= 1 and n an m-digit number.

Original entry on oeis.org

1, 9, 45, 55, 99, 297, 703, 999, 2223, 2728, 4950, 5050, 7272, 7777, 9999, 17344, 22222, 77778, 82656, 95121, 99999, 142857, 148149, 181819, 187110, 208495, 318682, 329967, 351352, 356643, 390313, 461539, 466830, 499500, 500500, 533170, 538461, 609687, 643357
Offset: 1

Views

Author

Keywords

Comments

Consider an m-digit number n. Square it and add the right m digits to the left m or m-1 digits. If the resultant sum is n, then n is a term of the sequence.
4879 and 5292 are in A006886 but not in this version.
Shape of plot (see links) seems to consist of line segments whose lengths along the x-axis depend on the number of unitary divisors of 10^m-1 which is equal to 2^w if m is a multiple of 3 or 2^(w+1) otherwise, where w is the number of distinct prime factors of the repunit of length m (A095370). w for m = 60 is 20, whereas w <= 15 for m < 60. This leads to the long segment corresponding to m = 60. - Chai Wah Wu, Jun 02 2016
If n*(n-1) is divisible by 10^m-1 then n is a term where m is the number of decimal digits in n. - Giorgos Kalogeropoulos, Mar 27 2025

Examples

			703 is Kaprekar because 703 = 494 + 209, 703^2 = 494209.
		

References

  • D. R. Kaprekar, On Kaprekar numbers, J. Rec. Math., 13 (1980-1981), 81-82.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, p. 151.

Crossrefs

Programs

  • Haskell
    a053816 n = a053816_list !! (n-1)
    a053816_list = 1 : filter f [4..] where
       f x = length us - length vs <= 1 &&
             read (reverse us) + read (reverse vs) == x
             where (us, vs) = splitAt (length $ show x) (reverse $ show (x^2))
    -- Reinhard Zumkeller, Oct 04 2014
    
  • Mathematica
    kapQ[n_]:=Module[{idn2=IntegerDigits[n^2],len},len=Length[idn2];FromDigits[ Take[idn2,Floor[len/2]]]+FromDigits[Take[idn2, -Ceiling[len/2]]]==n]; Select[Range[540000],kapQ] (* Harvey P. Dale, Aug 22 2011 *)
    ktQ[n_] := ((x = n^2) - (z = FromDigits[Take[IntegerDigits[x], y = -IntegerLength[n]]]))*10^y + z == n; Select[Range[540000], ktQ] (* Jayanta Basu, Aug 04 2013 *)
    Select[Range[540000],Total[FromDigits/@TakeDrop[IntegerDigits[#^2], Floor[ IntegerLength[ #^2]/2]]] ==#&] (* The program uses the TakeDrop function from Mathematica version 10 *) (* Harvey P. Dale, Jun 03 2016 *)
    maxDigits=6; Flatten[Table[lst={};sub=Subsets@FactorInteger[v=10^d-1]; Do[a=Times@@Power@@@s; n=ChineseRemainder[{0,1},{a,v/a},1]; If[10^(d-1)<=n<10^d,AppendTo[lst,n]],{s,sub}];Union@lst,{d,maxDigits}]] (* Giorgos Kalogeropoulos, Mar 27 2025 *)
  • PARI
    isok(n) = n == vecsum(divrem(n^2, 10^(1+logint(n, 10)))); \\ Ruud H.G. van Tol, Jun 02 2024
    
  • Python
    def is_A053816(n): return n==sum(divmod(n**2,10**len(str(n)))) and n
    print(upto_1e5:=list(filter(is_A053816, range(10**5)))) # M. F. Hasler, Mar 28 2025

Extensions

More terms from Michel ten Voorde, Apr 11 2001

A339215 Primorial-base self numbers: numbers not of the form k + A276150(k).

Original entry on oeis.org

1, 4, 11, 18, 25, 32, 35, 42, 49, 56, 63, 66, 73, 80, 87, 94, 97, 104, 111, 118, 125, 128, 135, 142, 149, 156, 159, 166, 173, 180, 187, 190, 197, 204, 229, 236, 243, 246, 253, 260, 267, 274, 277, 284, 291, 298, 305, 308, 315, 322, 329, 336, 339, 346, 353, 360
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2020

Keywords

Comments

Analogous to self numbers (A003052) using primorial base representation (A049345) instead of decimal expansion.
The numbers of terms that do not exceed 10^k, for k = 0, 1, ..., are 1, 2, 17, 150, 1469, 14669, 146680, 1466723, 14667162, 146671527, 1466715137, ... . Apparently, the asymptotic density of this sequence exists and equals 0.1466715... . - Amiram Eldar, Aug 08 2025

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, pp. 384-386.

Crossrefs

Programs

  • Mathematica
    max = 4; bases = Prime@Range[max, 1, -1]; m = Times @@ bases; s[n_] := n + Plus @@ IntegerDigits[n, MixedRadix[bases]]; Complement[Range[m], Array[s, m]]

A045913 Kaprekar numbers: numbers k such that k = q + r and k^2 = q*10^m + r, for some m >= 1, q >= 0 and 0 <= r < 10^m. Here q and r must both have the same number of digits.

Original entry on oeis.org

1, 9, 45, 55, 703, 4950, 5050, 7272, 7777, 77778, 82656, 318682, 329967, 351352, 356643, 390313, 461539, 466830, 499500, 500500, 533170, 538461, 609687, 643357, 648648, 670033, 681318, 791505, 812890, 818181, 851851, 857143, 4444444, 4927941, 5072059, 5555556, 11111112, 36363636, 38883889, 44363341, 44525548, 49995000, 50005000
Offset: 1

Views

Author

Keywords

Comments

A variant of Kaprekar's original definition (A006886).

Examples

			703 is Kaprekar because 703 = 494 + 209, 703^2 = 494209.
11111112^2 = 123456809876544 = (1234568 + 9876544)^2. The two "halves" of the square have the same length here, although it's not m but rather m - 1.
		

References

  • D. R. Kaprekar, On Kaprekar numbers, J. Rec. Math., 13 (1980-1981), 81-82.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, p. 151.

Crossrefs

Extensions

More terms from Michel ten Voorde, Apr 13 2001
Definition clarified by Reinhard Zumkeller, Oct 05 2014
Definition modified and terms corrected by Max Alekseyev, Aug 06 2017

A230094 Numbers that can be expressed as (m + sum of digits of m) in exactly two ways.

Original entry on oeis.org

101, 103, 105, 107, 109, 111, 113, 115, 117, 202, 204, 206, 208, 210, 212, 214, 216, 218, 303, 305, 307, 309, 311, 313, 315, 317, 319, 404, 406, 408, 410, 412, 414, 416, 418, 420, 505, 507, 509, 511, 513, 515, 517, 519, 521, 606, 608, 610, 612, 614, 616, 618, 620, 622, 707, 709, 711, 713, 715, 717, 719, 721, 723, 808
Offset: 1

Views

Author

N. J. A. Sloane, Oct 10 2013, Oct 24 2013

Keywords

Comments

Numbers n such that A230093(n) = 2.
The sequence "Numbers n such that A230093(n) = 3" starts at 10^13+1 (see A230092). This implies that changing the definition of A230094 to "Numbers n such that A230093(n) >= 2" (the so-called "junction numbers") would produce a sequence which agrees with A230094 up to 10^13.
Makowski shows that the sequence of junction numbers is infinite.

Examples

			a(1) = 101 = 91 + (9+1) = 100 + (1+0+0);
a(10) = 202 = 191 + (1+9+1) = 200 + (2+0+0);
a(100) = 1106 = 1093 + (1+0+9+3) = 1102 + (1+1+0+2);
a(1000) = 10312 = 10295 + (1+0+2+9+5) = 10304 + (1+0+3+0+4).
		

References

  • Joshi, V. S. A note on self-numbers. Volume dedicated to the memory of V. Ramaswami Aiyar. Math. Student 39 (1971), 327--328 (1972). MR0330032 (48 #8371)
  • D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately Printed, 311 Devlali Camp, Devlali, India, 1963.
  • Makowski, Andrzej. On Kaprekar's "junction numbers''. Math. Student 34 1966 77 (1967). MR0223292 (36 #6340)
  • Narasinga Rao, A. On a technique for obtaining numbers with a multiplicity of generators. Math. Student 34 1966 79--84 (1967). MR0229573 (37 #5147)

Crossrefs

Programs

  • Haskell
    a230094 n = a230094_list !! (n-1)
    a230094_list = filter ((== 2) . a230093) [0..]
    -- Reinhard Zumkeller, Oct 11 2013
  • Maple
    For Maple code see A230093.
  • Mathematica
    Position[#, 2][[All, 1]] - 1 &@ Sort[Join[#2, Map[{#, 0} &, Complement[Range[#1], #2[[All, 1]]]] ] ][[All, -1]] & @@ {#, Tally@ Array[# + Total@ IntegerDigits@ # &, # + 1, 0]} &[10^3] (* Michael De Vlieger, Oct 28 2020, after Harvey P. Dale at A230093 *)

A339211 Zeckendorf self numbers: numbers not of the form k + A007895(k).

Original entry on oeis.org

1, 5, 7, 10, 19, 21, 27, 29, 32, 36, 40, 42, 45, 54, 61, 63, 66, 75, 77, 83, 85, 88, 95, 97, 100, 109, 111, 117, 119, 122, 126, 130, 132, 135, 144, 146, 150, 152, 155, 164, 166, 172, 174, 177, 181, 185, 187, 190, 199, 206, 208, 211, 220, 222, 228, 230, 233, 239
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2020

Keywords

Comments

Analogous to self numbers (A003052) using the Zeckendorf representation (A014417) instead of decimal expansion.
The numbers of terms that do not exceed 10^k, for k = 0, 1, ..., are 1, 4, 25, 236, 2351, 23495, 234949, 2349463, 23494586, 234945839, 2349458364, ... . Apparently, the asymptotic density of this sequence exists and equals 0.23494583... . - Amiram Eldar, Aug 08 2025

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384-386.

Crossrefs

Programs

  • Mathematica
    z[n_] := n + Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; m = 250; Complement[Range[m], Array[z, m]] (* after Alonso del Arte at A007895 *)

A339212 Dual-Zeckendorf self numbers: numbers not of the form k + A112310(k).

Original entry on oeis.org

1, 4, 8, 10, 14, 17, 19, 28, 31, 33, 39, 41, 50, 53, 55, 59, 63, 66, 68, 74, 76, 85, 88, 90, 97, 106, 109, 111, 115, 119, 122, 124, 130, 132, 141, 144, 146, 153, 156, 158, 164, 166, 175, 178, 180, 187, 196, 199, 201, 205, 209, 212, 214, 220, 222, 231, 234, 236
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2020

Keywords

Comments

Analogous to self numbers (A003052) using the dual Zeckendorf representation (A104326) instead of decimal expansion.

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384-386.

Crossrefs

Programs

  • Mathematica
    fibTerms[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr]; dzs[n_] := n + Module[{v = fibTerms[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, Total[v[[i[[1, 1]] ;; -1]]]]]; m = 240; Complement[Range[m], Array[dzs, m]]

A339213 Phi-base self numbers: positive numbers not of the form k + A055778(k).

Original entry on oeis.org

1, 3, 6, 10, 12, 15, 19, 23, 26, 30, 32, 38, 41, 43, 52, 55, 59, 61, 64, 68, 72, 75, 79, 81, 86, 89, 91, 97, 101, 104, 108, 110, 115, 118, 120, 126, 131, 135, 137, 140, 144, 148, 151, 155, 157, 163, 166, 168, 177, 180, 184, 186, 189, 193, 197, 200, 204, 206, 213
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2020

Keywords

Comments

Analogous to self numbers (A003052) using base phi (A130600) instead of base 10.

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384-386.

Crossrefs

Programs

  • Mathematica
    s[1] = 2; s[n_] := n + Plus @@ RealDigits[n, GoldenRatio, 2*Ceiling[Log[GoldenRatio, n]]][[1]]; m = 220; Complement[Range[m], Array[s, m]]

A339214 Factorial-base self numbers: numbers not of the form k + A034968(k).

Original entry on oeis.org

1, 4, 11, 18, 36, 43, 61, 68, 86, 93, 111, 118, 125, 132, 139, 157, 164, 182, 189, 207, 214, 232, 239, 246, 253, 260, 278, 285, 303, 310, 328, 335, 353, 360, 367, 374, 381, 399, 406, 424, 431, 449, 456, 474, 481, 488, 495, 502, 520
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2020

Keywords

Comments

Analogous to self numbers (A003052) using factorial base representation (A007623) instead of decimal expansion.
The numbers of terms that do not exceed 10^k, for k = 0, 1, ..., are 1, 2, 10, 90, 878, 8749, 87455, 874499, 8744934, 87449296, 874492907, ... . Apparently, the asymptotic density of this sequence exists and equals 0.08744929... . - Amiram Eldar, Aug 08 2025

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384-386.

Crossrefs

Programs

  • Mathematica
    max = 6; s[n_] := n + Plus @@ IntegerDigits[n, MixedRadix[Range[max, 2, -1]]]; m = max!; Complement[Range[m], Array[s, m]]
Previous Showing 31-40 of 97 results. Next