cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A365766 Expansion of (1/x) * Series_Reversion( x*(1-x)^5/(1+x) ).

Original entry on oeis.org

1, 6, 56, 626, 7721, 101322, 1387648, 19606874, 283711805, 4183074796, 62618441024, 949174260118, 14539621490403, 224721722650224, 3500129695446816, 54882906729334378, 865664769346769005, 13725517938819785298, 218639429113140366968
Offset: 0

Views

Author

Seiichi Manyama, Sep 18 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+1, k)*binomial(6*n-k+4, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+1,k) * binomial(6*n-k+4,n-k) = (1/(n+1)) * Sum_{k=0..n} binomial(5*n+k+4,k) * binomial(n+1,n-k).

A211788 Triangle enumerating certain two-line arrays of positive integers.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 1, 7, 21, 21, 1, 10, 47, 126, 126, 1, 13, 82, 324, 818, 818, 1, 16, 126, 642, 2300, 5594, 5594, 1, 19, 179, 1107, 4977, 16741, 39693, 39693, 1, 22, 241, 1746, 9335, 38642, 124383, 289510, 289510, 1, 25, 312, 2586, 15941, 77273, 301630, 939880, 2157150, 2157150
Offset: 1

Views

Author

Peter Bala, Aug 02 2012

Keywords

Comments

This is the table of f(n,k) in the notation of Carlitz (p.123). The triangle enumerates two-line arrays of positive integers
............a_1 a_2 ... a_n..........
............b_1 b_2 ... b_n..........
such that
1) max(a_i, b_i) <= min(a_(i+1), b_(i+1)) for 1 <= i <= n-1
2) max(a_i, b_i) <= i for 1 <= i <= n
3) a_n = b_n = k.
See A071948 and A193091 for other two-line array enumerations.
It appears that the row reverse array is the Riordan array (f(x), g(x)), where f(x) = 1 + x + 4*x^2 + 21*x^3 + 126*x^4 + 818*x^5 + ... is the g.f. of A003168 and g(x) = x + 3*x^2 + 14*x^3 + 79*x^4 + 494*x^5 + 3294*x^6 + ... is the g.f. of A003169. - Peter Bala, Nov 26 2024

Examples

			Triangle begins
.n\k.|..1....2....3....4....5....6
= = = = = = = = = = = = = = = = = =
..1..|..1
..2..|..1....1
..3..|..1....4....4
..4..|..1....7...21...21
..5..|..1...10...47..126..126
..6..|..1...13...82..324..818..818
...
T(4,2) = 7: The 7 two-line arrays are
...1 1 1 2....1 1 2 2....1 2 2 2....1 1 1 2
...1 1 1 2....1 1 2 2....1 2 2 2....1 1 2 2
...........................................
...1 1 2 2....1 1 2 2....1 2 2 2...........
...1 1 1 2....1 2 2 2....1 1 2 2...........
		

Crossrefs

Cf. A003168 (main diagonal), A211789 (row sums).

Formula

Recurrence equation:
T(1,1) = 1; T(n,n) = T(n,n-1); T(n+1,k) = Sum_{j = 1..k} (2*k-2*j+1)*T(n,j) for 1 <= k <= n.
T(n+1,k+1) = (1/n) * ((n - k)*Sum_{i = 0..k} C(n, k-i)*C(2*n+i, i) + Sum_{i = 1..k} C(n, k-i)*C(2*n+i, i-1)).
Row reverse has production matrix
1 1
3 3 1
5 5 3 1
7 7 5 3 1
...
Main diagonal T(n,n) = A003168(n). Row sums A211789.

A365765 Expansion of (1/x) * Series_Reversion( x*(1-x)^4/(1+x) ).

Original entry on oeis.org

1, 5, 39, 365, 3772, 41491, 476410, 5644477, 68493324, 846937140, 10633195119, 135185288475, 1736883987836, 22516798984946, 294169295918996, 3869084306851933, 51189853304834940, 680816769653570044, 9097058255214149068, 122064057533865334100
Offset: 0

Views

Author

Seiichi Manyama, Sep 18 2023

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[(1/x) *InverseSeries[Series[x*(1-x)^4/(1+x),{x,0,20}]],x] (* Stefano Spezia, May 04 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+1, k)*binomial(5*n-k+3, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+1,k) * binomial(5*n-k+3,n-k) = (1/(n+1)) * Sum_{k=0..n} binomial(4*n+k+3,k) * binomial(n+1,n-k).

A379174 G.f. A(x) satisfies A(x) = (1 + x*A(x)^3)/(1 - x*A(x))^2.

Original entry on oeis.org

1, 3, 20, 176, 1772, 19309, 221651, 2640016, 32322122, 404256442, 5142846467, 66341063274, 865723122919, 11408144684248, 151593390664710, 2029025599194394, 27330120599494110, 370183683091079836, 5038997387800717228, 68896081533831380702, 945747379824209853435
Offset: 0

Views

Author

Seiichi Manyama, Dec 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+2*k+1, k)*binomial(3*n+3*k+1, n-k)/(n+2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+2*k+1,k) * binomial(3*n+3*k+1,n-k)/(n+2*k+1).

A100328 Column 1 of triangle A100326, in which row n equals the inverse binomial of column n of square array A100324, with leading zero omitted.

Original entry on oeis.org

1, 4, 20, 116, 736, 4952, 34716, 250868, 1855520, 13979192, 106901032, 827644424, 6474611984, 51100656544, 406400018092, 3253636464756, 26201323746880, 212093247874904, 1724793778005528, 14084738953391768, 115447965121881856
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2004

Keywords

Comments

Self-convolution of A100327, which equals the row sums of triangle A100326.

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,sum(j=0,n, if(j==0,1,sum(k=0,j,2*binomial(j,k)*binomial(2*j+k,k-1)/j))* if(n-j==0,1,sum(k=0,n-j,2*binomial(n-j,k)*binomial(2*n-2*j+k,k-1)/(n-j)))))}

Formula

G.f.: (1+G003169(x))*G003169(x)/x, where G003169(x) is the g.f. of A003169.
Recurrence: 4*(n+1)*(2*n+1)*(17*n^2 - 28*n + 12)*a(n) = (1207*n^4 - 1988*n^3 + 1013*n^2 - 124*n - 12)*a(n-1) - 2*(n-2)*(2*n-3)*(17*n^2 + 6*n + 1)*a(n-2). - Vaclav Kotesovec, Jul 05 2014
a(n) ~ sqrt(95+393/sqrt(17)) * ((71+17*sqrt(17))/16)^n / (4*sqrt(2*Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 05 2014
From Peter Bala, Sep 08 2024: (Start)
a(n) = (2/n) * Sum_{k = 0..n} binomial(n+1, n-k-1)*binomial(2*n, k)*2^(n-k) for n >= 1.
a(n) = 4*Jacobi_P(n-1, 2, n+1, 3)/n for n >= 1. Cf. A003168. (End)

A379173 G.f. A(x) satisfies A(x) = (1 + x)/(1 - x*A(x))^2.

Original entry on oeis.org

1, 3, 11, 53, 284, 1630, 9794, 60830, 387390, 2515892, 16599051, 110943779, 749603067, 5111606801, 35133394554, 243146923574, 1692918638012, 11850006727400, 83341778073920, 588646472669454, 4173607638548291, 29694593381322531, 211941668053441490, 1517087043428034420
Offset: 0

Views

Author

Seiichi Manyama, Dec 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n-k+1, k)*binomial(3*n-3*k+1, n-k)/(n-k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n-k+1,k) * binomial(3*n-3*k+1,n-k)/(n-k+1).

A294724 Number of Q graphs with 2*n vertices rooted at an internal edge.

Original entry on oeis.org

0, 0, 0, 1, 11, 96, 785, 6283, 49987, 397768, 3174084, 25426290, 204538114, 1652327820, 13402442651, 109129475455, 891793354235, 7312118010384, 60141701374424, 496095022537998, 4103183675407098, 34022136992384720
Offset: 1

Views

Author

Sean A. Irvine, Nov 07 2017

Keywords

Crossrefs

Formula

G.f.: P(x) * (B(x) - x)^2 where P(x) is the g.f. for A003169 and B(x) is the g.f. for A003168.

A007164 Number of P-graphs with 2n edges.

Original entry on oeis.org

1, 2, 7, 31, 167, 999, 6495, 44619, 319463, 2356406, 17775821, 136405506, 1060866006, 8339982193, 66147792753, 528559162227, 4250413757583, 34368723106860, 279254390054538, 2278795583070154, 18667432144042678, 153452484745198722
Offset: 1

Views

Author

Keywords

References

  • R. C. Read, On the enumeration of a class of plane multigraphs, Aequat. Math., 31 (1986), 47-63.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = (A003169(n) + 2 * A007165(n) + A007163(n)) / 4. - Sean A. Irvine, Nov 06 2017

Extensions

a(5), a(9), a(10) corrected and more terms from Sean A. Irvine, Nov 06 2017

A007171 Number of Q-graphs with 2n edges.

Original entry on oeis.org

1, 2, 4, 16, 89, 579, 3989, 28630, 210865, 1584308, 12091902, 93483120, 730503054, 5760438853, 45780146521, 366304396662, 2948412461685, 23857049238752, 193944769559906, 1583294537879106, 12974430494985262, 106685110047676402
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(1) = 1, a(n) = A007170(n) + (A003169(n-1) + A007165(n-1)) / 2. - Sean A. Irvine, Nov 07 2017

Extensions

a(9) corrected and more terms from Sean A. Irvine, Nov 07 2017
Previous Showing 11-19 of 19 results.