cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-49 of 49 results.

A056032 Trimorphic but not bimorphic nor automorphic.

Original entry on oeis.org

4, 9, 24, 49, 51, 75, 99, 125, 249, 251, 375, 499, 501, 624, 749, 751, 875, 999, 1249, 3751, 4375, 4999, 5001, 5625, 6249, 8751, 9375, 9999, 18751, 31249, 40625, 49999, 50001, 59375, 68751, 81249, 90624, 99999, 109375, 218751, 281249, 390625, 499999
Offset: 1

Views

Author

Robert G. Wilson v, Jul 24 2000

Keywords

Crossrefs

Cf. A003226 and A033819.

Programs

  • Mathematica
    Do[x=Floor[N[Log[10, n],25]]+1; If[Mod[n^3, 10^x] == n,If[Mod[n^2, 10^x]!= n, Print[n]]], {n,5*10^5}]

Extensions

Missing a(41) inserted by Sean A. Irvine, Apr 12 2022

A056033 5-morphic but not bimorphic nor automorphic.

Original entry on oeis.org

2, 3, 4, 7, 8, 9, 24, 32, 43, 49, 51, 57, 68, 75, 93, 99, 125, 193, 249, 251, 307, 375, 432, 443, 499, 501, 557, 568, 624, 693, 749, 751, 807, 875, 943, 999, 1249, 1251, 1693, 1875, 2057, 2499, 2501, 2943, 3125, 3307, 3568, 3749, 3751, 4193, 4375, 4557, 4999
Offset: 1

Views

Author

Robert G. Wilson v, Jul 24 2000

Keywords

Crossrefs

Cf. A003226 and A033819.

Programs

  • Mathematica
    Do[x=Floor[N[Log[10, n],25]]+1; If[Mod[n^5, 10^x] == n,If[Mod[n^2, 10^x]!= n, Print[n]]], {n, 10^4}]

A056036 5-morphic but not bimorphic, automorphic nor trimorphic.

Original entry on oeis.org

2, 3, 7, 8, 32, 43, 57, 68, 93, 193, 307, 432, 443, 557, 568, 693, 807, 943, 1251, 1693, 1875, 2057, 2499, 2501, 2943, 3125, 3307, 3568, 3749, 4193, 4557, 5443, 5807, 6251, 6432, 6693, 6875, 7057, 7499, 7501, 7943, 8125, 8307, 8749, 9193, 9557, 13568
Offset: 1

Views

Author

Robert G. Wilson v, Jul 24 2000

Keywords

Crossrefs

Cf. A003226 and A033819.

Programs

  • Mathematica
    Do[x=Floor[N[Log[10, n],25]]+1; If[Mod[n^5, 10^x] == n,If[Mod[n^2, 10^x]!= n, If[Mod[n^3, 10^x]!= n,Print[n]]]], {n,1,50000}]

A056050 Semimorphic numbers: n^2 mod the number of digits in n = n^3 mod the number of digits in n.

Original entry on oeis.org

1, 5, 6, 10, 20, 25, 26, 30, 40, 45, 50, 60, 65, 70, 76, 80, 85, 90, 100, 200, 225, 300, 376, 400, 425, 500, 600, 625, 700, 800, 825, 876, 900, 1000, 1025, 1100, 1200, 1300, 1400, 1425, 1500, 1600, 1700, 1800, 1825, 1876, 1900, 2000, 2100, 2200, 2225, 2300
Offset: 1

Views

Author

Robert G. Wilson v, Jul 25 2000

Keywords

Crossrefs

Cf. A003226.

Programs

  • Mathematica
    Do[l = Floor[N[Log[10, n], 24]] + 1; If[Mod[n^2, 10^l] == Mod[n^3, 10^l], Print[n]], {n, 1, 5000}]

A094190 Least n-digit automorphic number.

Original entry on oeis.org

0, 25, 376, 9376, 90625, 109376, 2890625, 12890625, 212890625, 1787109376, 18212890625, 918212890625, 9918212890625, 40081787109376, 259918212890625, 3740081787109376, 43740081787109376, 256259918212890625, 2256259918212890625
Offset: 1

Views

Author

Lekraj Beedassy, May 25 2004

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := If[n == 1, 0, Block[{a5 = PowerMod[5, 2^n, 10^n], a6 = PowerMod[16, 5^n, 10^n]}, If[a5 < 10^(n - 1), a5 = 10^(n + 1)]; If[a6 < 10^(n - 1), a6 = 10^(n + 1)]; Min[a5, a6]]]; Array[f, 19] (* Robert G. Wilson v, Aug 27 2006 *)

Formula

a(n) = Min( 5^(2^n) (mod 10^n), 16^(5^n) (mod 10^n) ). - Robert G. Wilson v, Aug 27 2006

Extensions

Corrected and extended by Robert G. Wilson v, Aug 27 2006

A177192 Primes p such that p^p ends in p and p is not congruent to 1 (mod 10).

Original entry on oeis.org

5, 193, 499, 557, 1249, 1693, 4999, 7057, 31249, 49999, 52057, 54193, 56249, 79193, 281249, 829193, 952057, 4531249, 4999999, 8281249, 8704193, 17077057, 39954193, 54577057, 63281249, 64954193, 904577057, 2154577057, 3092077057, 3958704193
Offset: 1

Views

Author

Keywords

Comments

A proper subset of A052228.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := PowerMod[n, n, 10^Floor[Log[10, n] + 1]] == n; p = 2; lst = {}; While[p < 10^12, If[ Mod[p, 10] != 1 && fQ@p, AppendTo[lst, p]; Print@p]; p = NextPrime@p]; lst

A308249 Squares of automorphic numbers in base 12 (cf. A201918).

Original entry on oeis.org

0, 1, 16, 81, 4096, 6561, 263169, 1478656, 40960000, 205549569, 54988374016, 233605955584, 6263292059649, 303894740860929, 338531738189824, 170196776412774400, 709858175909625856, 18638643564726714369, 124592287100855910400, 2576097707358918017025, 479214351668445504864256
Offset: 1

Views

Author

Jeremias M. Gomes, May 17 2019

Keywords

Comments

All terms k^2 in this sequence (except the trivials 0 and 1) have a square root k that is the suffix of one of the 12-adic numbers given by A259468 or A259469. From this, the sequence has an infinite number of terms. - A.H.M. Smeets, Aug 09 2019

Examples

			4096 = 2454_12 and sqrt(2454_12) = 54_12. Hence 4096 is in the sequence.
		

Crossrefs

Programs

  • Python
    dig = "0123456789AB"
    def To12(n):
        s = ""
        while n > 0:
            s, n = dig[n%12]+s, n//12
        return s
    n, m = 1, 0
    print(n,m*m)
    while n < 100:
        m = m+1
        m2, m1 = To12(m*m), To12(m)
        i, i2, i1 = 0, len(m2), len(m1)
        while i < i1 and (m2[i2-i-1] == m1[i1-i-1]):
            i = i+1
        if i == i1:
            print(n,m*m)
    n = n+1 # A.H.M. Smeets, Aug 09 2019
  • Sage
    [(n * n) for n in (0..1000000) if (n * n).str(base = 12).endswith(n.str(base = 12))]
    

Formula

Equals A201918(n)^2.

Extensions

Terms a(16)..a(21) from A.H.M. Smeets, Aug 09 2019

A351410 Numbers m such that the decimal representation of 8^m ends in m.

Original entry on oeis.org

56, 856, 5856, 25856, 225856, 5225856, 95225856, 895225856, 6895225856, 16895225856, 416895225856, 5416895225856, 35416895225856, 7035416895225856, 77035416895225856, 577035416895225856, 1577035416895225856, 21577035416895225856, 521577035416895225856, 1521577035416895225856, 81521577035416895225856
Offset: 1

Views

Author

Bernard Schott, Feb 10 2022

Keywords

Comments

The Crux Mathematicorum link calls these numbers "expomorphic" relative to "base" b, with here b = 8.
Under that definition, the term after a(13) = 35416895225856 is not "035416895225856" or "35416895225856" but a(14) = 7035416895225856.
Conjecture: if k(n) is "expomorphic" relative to "base" b, then the next one in the sequence, k(n+1), consists of the last n+1 digits of b^k(n).
This conjecture is true. See A133618. - David A. Corneth, Feb 10 2022

Examples

			8^56 = 374144419156711147060143317175368453031918731001856, so 56 is a term.
8^856 = ...5856 ends in 856, so 856 is another term.
		

Crossrefs

Cf. A003226 (automorphic numbers), A033819 (trimorphic numbers).
Cf. A133618 (leading digits).

Extensions

a(7)-a(8) from Michel Marcus, Feb 10 2022
More terms from David A. Corneth, Feb 10 2022

A385171 Perfect powers m^k whose decimal expansion begins with k and ends with m, where m and k are greater than 1.

Original entry on oeis.org

25, 59049, 78125, 13060694016, 17179869184, 19073486328125, 30514648531249, 53613724194557, 59120987373568, 65944160601201, 116490258898219, 324965351768751, 512908935546875, 21936950640377856, 371308922853718751, 578261433548013568, 913517247483640899
Offset: 1

Views

Author

Gonzalo Martínez, Jun 20 2025

Keywords

Comments

Such as automorphic numbers (A003226), which are those m such that m^2 ends with m, if m^k is in this sequence, then it is a k-morphic number which also begins with k. Thus, m^k contains both m and k as substrings at its ends.
If m is in A003226 and m^2 starts with 2, then m^2 is in this sequence. For example, A003226(3)^2 = 5^2 = 25 and A003226(119)^2.
If m is in A033819 and m^3 starts with 3, then m^3 is in this sequence. For example, A033819(39)^3 = 31249^3 = 30514648531249.
This sequence has infinitely many terms since (10^m - 1)^9 is a term for all m >= 2, which starts with (m - 1) 9's and ends with m 9's.

Examples

			6^13 = 13060694016 is a term since it starts with 13 and ends with 6.
		

Crossrefs

Previous Showing 41-49 of 49 results.