A181295 Triangle read by rows: T(n,k) is the number of 2-compositions of n having k odd entries (0<=k<=n) A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n.
1, 0, 2, 2, 0, 5, 0, 12, 0, 12, 7, 0, 46, 0, 29, 0, 58, 0, 152, 0, 70, 24, 0, 297, 0, 466, 0, 169, 0, 256, 0, 1236, 0, 1364, 0, 408, 82, 0, 1632, 0, 4575, 0, 3870, 0, 985, 0, 1072, 0, 8160, 0, 15702, 0, 10736, 0, 2378, 280, 0, 8160, 0, 35320, 0, 51121, 0, 29282, 0, 5741, 0
Offset: 0
Examples
T(2,2)=5 because we have (1/1),(1,0/0,1),(0,1/1,0),(1,1/0,0), and (0,0/1,1); the 2-compositions are written as (top row / bottom row). Triangle starts: 1; 0,2; 2,0,5; 0,12,0,12; 7,0,46,0,29;
References
- G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European Journal of Combinatorics, 28, 2007, 1724-1741.
Programs
-
Maple
G := (1-z^2)^2/(1-4*z^2+2*z^4-2*t*z-t^2*z^2): Gser := simplify(series(G, z = 0, 15)): for n from 0 to 11 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 11 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form
Formula
G.f.=G(t,z)=(1-z^2)^2/(1-4z^2+2z^4-2tz-t^2*z^2).
The g.f. H(t,s,z), where z marks the size of the 2-composition and t (s) marks the number of odd (even) entries, is H=1/(1-h), where h=z(t+sz)(2s+tz-sz^2)/(1-z^2)^2.
Comments