A181336
Triangle read by rows: T(n,k) is the number of 2-compositions of n having k even entries in the top row. A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n.
Original entry on oeis.org
1, 1, 1, 2, 4, 1, 5, 11, 7, 1, 11, 31, 29, 10, 1, 25, 83, 102, 56, 13, 1, 56, 217, 329, 245, 92, 16, 1, 126, 556, 1000, 938, 487, 137, 19, 1, 283, 1403, 2917, 3292, 2180, 855, 191, 22, 1, 636, 3498, 8247, 10865, 8740, 4406, 1376, 254, 25, 1, 1429, 8636, 22756, 34248
Offset: 0
T(2,1)=4 because we have (0/2), (2/0), (1,0/0,1), and (0,1/1,0) (the 2-compositions are written as (top row / bottom row)).
Triangle starts:
1;
1,1;
2,4,1;
5,11,7,1;
11,31,29,10,1;
25,83,102,56,13,1;
- G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European Journal of Combinatorics, 28, 2007, 1724-1741.
-
G := (1+z)*(1-z)^2/(1-2*z-z^2+z^3-s*z*(1+z-z^2)): Gser := simplify(series(G, z = 0, 13)): for n from 0 to 10 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 10 do seq(coeff(P[n], s, k), k = 0 .. n) end do; # yields sequence in triangular form
A259860
a(n+8)+34*a(n+4)+a(n)=0 with a(0)-a(7) as shown.
Original entry on oeis.org
1, 5, 12, 12, -29, -169, -408, -408, 985, 5741, 13860, 13860, -33461, -195025, -470832, -470832, 1136689, 6625109, 15994428, 15994428, -38613965, -225058681, -543339720, -543339720, 1311738121, 7645370045, 18457556052, 18457556052, -44560482149
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222.
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (4,-8,4,-1).
-
A259860 := proc(n)
if n <= 7 then
op(n+1,[1, 5, 12, 12, -29, -169, -408, -408, 985, 5741, 13860, 13860]) ;
else
-34*procname(n-4)-procname(n-8) ;
fi ;
end proc: # R. J. Mathar, Jun 24 2024
-
LinearRecurrence[{4,-8,4,-1},{1,5,12,12},40] (* Harvey P. Dale, Mar 14 2016 *)
-
Vec((x+1)/(x^4-4*x^3+8*x^2-4*x+1) + O(x^50)) \\ Colin Barker, Jul 09 2015
A259861
a(n+8)+34*a(n+4)+a(n)=0 with a(0)-a(7) as shown.
Original entry on oeis.org
2, 2, -5, -29, -70, -70, 169, 985, 2378, 2378, -5741, -33461, -80782, -80782, 195025, 1136689, 2744210, 2744210, -6625109, -38613965, -93222358, -93222358, 225058681, 1311738121, 3166815962, 3166815962, -7645370045, -44560482149, -107578520350, -107578520350
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222.
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (4,-8,4,-1).
A128611
Number of Z-convex polyominoes with semiperimeter n.
Original entry on oeis.org
0, 0, 1, 2, 7, 28, 116, 484, 2022, 8448, 35290, 147376, 615228, 2567060, 10704976, 44611804, 185780308, 773060804, 3214225836, 13352979316, 55426067494, 229870371888, 952548347122, 3943943111920, 16316243701350, 67447113649312, 278592165886198, 1149863118820584, 4742473257979906, 19545876370622104, 80502059920697442
Offset: 0
- Robert Israel, Table of n, a(n) for n = 0..1658
- Adrien Boussicault, Simone Rinaldi, and Samanta Socci, The number of directed k-convex polyominoes, arXiv preprint arXiv:1501.00872 [math.CO], 2015; Discrete Math., 343 (2020), #111731, 22 pages. See page 2.
- E. Duchi, S. Rinaldi and G. Schaeffer, The number of Z-convex polyominoes, arXiv:math/0602124 [math.CO], 2006.
-
d:=(1-2*t-sqrt(1-4*t))/2:
t1:=
2*t^4*(1-2*t)^2*d/( (1-4*t)^2*(1-3*t)*(1-t) )
+ t^2*(1-6*t+10*t^2-2*t^3-t^4)/( (1-4*t)*(1-3*t)*(1-t) ):
series(t1,t,120):
seriestolist(%); # N. J. A. Sloane, Oct 02 2011
-
gf = 2 t^4 (1-2t)^2 d/((1-4t)^2 (1-3t)(1-t)) + t^2 (1-6t+10t^2-2t^3-t^4)/ ((1-4t)(1-3t)(1-t)) /. d -> (1-2t-Sqrt[1-4t])/2;
CoefficientList[gf + O[t]^31, t] (* Jean-François Alcover, Aug 17 2018 *)
A181293
Triangle read by rows: T(n,k) is the number of 2-compositions of n having k 0's (0<=k<=n) A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n.
Original entry on oeis.org
1, 0, 2, 1, 2, 4, 2, 6, 8, 8, 4, 14, 24, 24, 16, 8, 32, 64, 80, 64, 32, 16, 72, 164, 240, 240, 160, 64, 32, 160, 408, 680, 800, 672, 384, 128, 64, 352, 992, 1848, 2480, 2464, 1792, 896, 256, 128, 768, 2368, 4864, 7296, 8288, 7168, 4608, 2048, 512, 256, 1664, 5568
Offset: 0
T(2,0)=1, T(2,1)=2, T(2,2)=4 because the 2-compositions of 2, written as (top row/bottom row), are (1/1), (0/2), (2/0), (1,0/0,1), (0,1/1,0), (1,1/0,0), (0,0/1,1).
Triangle starts:
1;
0,2;
1,2,4;
2,6,8,8;
4,14,24,24,16;
...
-
G := (1-z)^2/(1-2*z-2*t*z+2*t*z^2): Gser := simplify(series(G, z = 0, 14)): for n from 0 to 10 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 10 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form
A181302
Triangle read by rows: T(n,k) is the number of 2-compositions of n having k columns with distinct entries (0<=k<=n).
Original entry on oeis.org
1, 0, 2, 1, 2, 4, 0, 8, 8, 8, 2, 8, 32, 24, 16, 0, 24, 56, 104, 64, 32, 4, 24, 152, 248, 304, 160, 64, 0, 64, 248, 712, 896, 832, 384, 128, 8, 64, 568, 1496, 2800, 2880, 2176, 896, 256, 0, 160, 888, 3560, 6976, 9824, 8576, 5504, 2048, 512, 16, 160, 1848, 6904, 17904
Offset: 0
T(2,1) = 2 because we have (0/2) and (2/0) (the 2-compositions are written as (top row/bottom row)).
Triangle starts:
1;
0,2;
1,2,4;
0,8,8,8;
2,8,32,24,16;
-
G := (1+z)*(1-z)^2/((1-z)*(1-2*z^2)-2*t*z): Gser := simplify(series(G, z = 0, 15)): for n from 0 to 10 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 10 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form
A181338
Triangle read by rows: T(n,k) is the number of 2-compositions of n having largest entry k (1<=k<=n).
Original entry on oeis.org
2, 5, 2, 12, 10, 2, 29, 41, 10, 2, 70, 152, 46, 10, 2, 169, 536, 193, 46, 10, 2, 408, 1830, 770, 198, 46, 10, 2, 985, 6120, 2972, 811, 198, 46, 10, 2, 2378, 20178, 11202, 3218, 816, 198, 46, 10, 2, 5741, 65867, 41481, 12484, 3259, 816, 198, 46, 10, 2, 13860
Offset: 1
T(3,3) = 2 because we have (0/3) and (3/0) (the 2-compositions are written as (top row/bottom row)).
Triangle starts:
2;
5,2;
12,10,2;
29,41,10,2;
70,152,46,10,2;
-
h := proc (k) options operator, arrow: (1-z)^2/(1-4*z+2*z^2+2*z^(k+1)-z^(2*k+2)) end proc: f := proc (k) options operator, arrow; simplify(h(k)-h(k-1)) end proc: G := sum(f(k)*t^k, k = 1 .. 30): Gser := simplify(series(G, z = 0, 15)): for n to 11 do P[n] := sort(coeff(Gser, z, n)) end do: for n to 11 do seq(coeff(P[n], t, k), k = 1 .. n) end do; # yields sequence in triangular form
A181368
Triangle read by rows: T(n,k) is the number of L-convex polyominoes of semiperimeter n, having k maximal rectangles (n >= 2, 1 <= k <= floor(n/2)). An L-convex polyomino is a convex polyomino in which any two cells can be connected by a path internal to the polyomino and which has at most 1 change of direction (i.e., one of the four orientations of the letter L). A maximal rectangle in an L-convex polyomino P is a rectangle included in P that is maximal with respect to inclusion.
Original entry on oeis.org
1, 2, 3, 4, 4, 20, 5, 61, 16, 6, 146, 128, 7, 301, 584, 64, 8, 560, 1992, 704, 9, 966, 5641, 4272, 256, 10, 1572, 14002, 18880, 3584, 11, 2442, 31471, 67820, 27136, 1024, 12, 3652, 65428, 209820, 147200, 17408, 13, 5291, 127699, 579125, 640096, 157952
Offset: 2
T(3,1)=2 because the L-convex polyominoes of semiperimeter 3 are the horizontal and the vertical dominoes, each containing one maximal rectangle.
Triangle starts:
1;
2;
3, 4;
4, 20;
5, 61, 16;
6, 146, 128;
- G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European Journal of Combinatorics, 28, 2007, 1724-1741 (see Fig. 9).
- G. Castiglione and A. Restivo, Reconstruction of L-convex polyominoes, Electronic Notes in Discrete Mathematics, Vol. 12, Elsevier Science, 2003.
-
T := proc (n, k) options operator, arrow: sum(binomial(2*k-2, j)*binomial(n+j-1, 2*k+j-1), j = 0 .. 2*k-2) end proc: for n from 2 to 14 do seq(T(n, k), k = 1 .. floor((1/2)*n)) end do; # yields sequence in triangular form
A253722
Triangle read by rows: coefficients of the partition polynomials for the reciprocal of the derivative of a power series, g(x)= 1/h'(x).
Original entry on oeis.org
1, -2, 4, -3, -8, 12, -4, 16, -36, 9, 16, -5, -32, 96, -54, -48, 24, 20, -6, 64, -240, 216, 128, -27, -144, -60, 16, 30, 24, -7, -128, 576, -720, -320, 216, 576, 160, -108, -96, -180, -72, 40, 36, 28, -8
Offset: 0
Let h(x) = h_0 + h_1 * x + h_2 * x^2 + ... . Then g(x) = 1/h'(x) = 1/[h_1 + 2*h_2 * x + 3*h_3 * x^2 + ...] = (h_1)^(-1) P(0;h_1) + (h_1)^(-2) * P(1;h_1,h_2) * x + (h_1)^(-3) * P(2;h_1,h_2,h_3) * x^2 + ... , and, with h_n = (n'), the first few partition polynomials are
P(0;..)= 1
P(1;..)= -2 (2')
P(2;..)= 4 (2')^2 - 3 (3')(1')
P(3;..)= -8 (2')^3 + 12 (3')(2')(1') - 4 (4')(1')^2
P(4;..)= 16 (2')^4 - 36 (2')^2(3')(1') + [9 (3')^2 + 16 (4')(2')](1')^2 - 5 (5')(1')^3
P(5;..)= -32 (2')^5 + 96 (2')^3(3')(1') + [-54 (3')^2(2') - 48 (4')(2')^2](1')^2 + [24 (3')(4') + 20 (5')(2')](1')^3 - 6 (6')(1')^4
P(6;..)= 64 (2')^6 - 240 (2')^4(3')(1') + [216 (3')^2(2') + 128 (4')(2')^3](1')^2 - [27 (3')^3 + 144 (4')(3')(2') + 60 (5')(2')^2](1')^3 + [16 (4')^2 + 30 (5')(3') + 24 (6')(2')](1')^4 - 7 (7')(1')^5
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
-
rows[n_] := {{1}}~Join~With[{s = 1/(1 + Sum[(k+1) u[k] x^k, {k, n}] + O[x]^(n+1))}, Table[Coefficient[s, x^k Product[u[t], {t, p}]], {k, n}, {p, Reverse@Sort[Sort /@ IntegerPartitions[k]]}]];
rows[7] // Flatten (* Andrey Zabolotskiy, Feb 19 2024 *)
-
C(v)={my(S=Set(v)); (-1)^(#v)*(#v)!*prod(i=1, #S, my(x=S[i], e=#select(y-> y==x, v)); (x+1)^e/e! )}
row(n)=[C(Vec(p)) | p<-Vecrev(partitions(n))]
{ for(n=0, 7, print(row(n))) } \\ Andrew Howroyd, Feb 19 2024
A346432
a(0) = 1; a(n) = n! * Sum_{k=0..n-1} (n-k+1) * a(k) / k!.
Original entry on oeis.org
1, 2, 14, 144, 1968, 33600, 688320, 16450560, 449326080, 13806858240, 471395635200, 17703899136000, 725338710835200, 32193996432998400, 1538840509503897600, 78808952068374528000, 4305129487814098944000, 249876735246162984960000, 15356385691181506363392000
Offset: 0
Cf.
A000670,
A001339,
A002866,
A003480,
A007840,
A052555,
A052567,
A136658,
A216794,
A308939,
A346433.
-
a[0] = 1; a[n_] := a[n] = n! Sum[(n - k + 1) a[k]/k!, {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
nmax = 18; CoefficientList[Series[1/(2 - 1/(1 - x)^2), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^(n - k) StirlingS1[n, k] 2^k HurwitzLerchPhi[1/2, -k, 0]/2, {k, 0, n}], {n, 0, 18}]
-
my(x='x+O('x^25)); Vec(serlaplace(1 / (2 - 1 / (1 - x)^2))) \\ Michel Marcus, Jul 18 2021
Comments