A046207
Numbers to the right of the central elements in the triangle of denominators in Leibniz's Harmonic Triangle.
Original entry on oeis.org
2, 3, 12, 4, 20, 5, 60, 30, 6, 105, 42, 7, 280, 168, 56, 8, 504, 252, 72, 9, 1260, 840, 360, 90, 10, 2310, 1320, 495, 110, 11, 5544, 3960, 1980, 660, 132, 12, 10296, 6435, 2860, 858, 156, 13, 24024, 18018, 10010, 4004, 1092, 182, 14, 45045, 30030, 15015, 5460
Offset: 1
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25.
A177947
A symmetrical triangle sequence based on the beta function inverse and the spotlight tile A051601 as antidiagonal: t(n,m) = 1/Integrate[(-1 + t)^n/t^(m + n + 2), {t, 1, Infinity}] - (-2 Binomial[m + n, m] + Binomial[2 + m + n, 1 + m]).
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 13, 22, 13, 1, 1, 19, 45, 45, 19, 1, 1, 26, 79, 110, 79, 26, 1, 1, 34, 126, 224, 224, 126, 34, 1, 1, 43, 188, 406, 518, 406, 188, 43, 1, 1, 53, 267, 678, 1050, 1050, 678, 267, 53, 1
Offset: 0
{1},
{1, 1},
{1, 4, 1},
{1, 8, 8, 1},
{1, 13, 22, 13, 1},
{1, 19, 45, 45, 19, 1},
{1, 26, 79, 110, 79, 26, 1},
{1, 34, 126, 224, 224, 126, 34, 1},
{1, 43, 188, 406, 518, 406, 188, 43, 1},
{1, 53, 267, 678, 1050, 1050, 678, 267, 53, 1}
-
Clear[t, n]
t[n_, m_] = 1/Integrate[(-1 + t)^n/t^(m + n + 2), {t, 1, Infinity}] - (-2 Binomial[m + n, m] + Binomial[2 + m + n, 1 + m]);
a = Table[Table[t[n, m], {n, 0, 10}], {m, 0, 10}];
Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}];
Flatten[%]
A182397
Numerators in triangle that leads to the (first) Bernoulli numbers A027641/A027642.
Original entry on oeis.org
1, 1, -3, 1, -5, 5, 1, -7, 25, -5, 1, -9, 23, -35, 49, 1, -11, 73, -27, 112, -49, 1, -13, 53, -77, 629, -91, 58, 1, -15, 145, -130, 1399, -451, 753, -58, 1, -17, 95, -135, 2699, -2301, 8573, -869, 341, 1, -19, 241
Offset: 0
A273416
Numbers that occur 5 or more times in the triangle of denominators in Leibniz's Harmonic Triangle.
Original entry on oeis.org
30, 1260, 1980, 74256, 1861860, 603380175840
Offset: 1
The number 30 appears 1 time in row 5 in the central position {5*C(4,2)}, 2 times in row 6 {6*C(5,1); 6*C(5,4)} and, trivially, 2 times in row 30 {30*C(29,0); 30*C(29,29)}.
The number 1260 appears 2 times in row 10 {10*C(9,4); 10*C(9,5)}, 2 times in row 36 {36*C(35,1); 36*C(35,34)} and, trivially, 2 times in row 1260 {1260*C(1259,0); 1260*C(1259,1259)}.
A316140
Denominator of the autosequence 2/((n+2)*(n+3)) difference table written by antidiagonals.
Original entry on oeis.org
3, 6, 6, 10, 15, 10, 15, 30, 30, 15, 21, 105, 70, 105, 21, 28, 84, 140, 140, 84, 28, 36, 126, 252, 315, 252, 126, 36, 45, 180, 420, 630, 630, 420, 180, 45, 55, 495, 660, 1155, 1386, 1155, 660, 495, 55, 66, 330
Offset: 0
Difference table:
1/3, 1/6, 1/10, 1/15, ...
-1/6, -1/15, -1/30, -2/105, ...
1/10, 1/30, 1/70, 1/140, ...
-1/15, -2/105, -1/140, -1/315, ... .
...
Table starts:
3 6 10 15 21 28 ...
6 15 30 105 84 126 ...
10 30 70 140 252 420 ...
15 105 140 315 630 1155 ...
21 84 252 630 1386 2772 ...
...
As a triangle:
3;
6, 6;
10, 15, 10;
15, 30, 30, 15;
...
-
tabl(nn) = {nn = 2*nn; m = matrix(nn, nn, n, k, if (n==1, 2/((k+1)*(k+2)))); for (n=2, nn, for (k=1, nn-n +1, m[n, k] = m[n-1, k+1] - m[n-1,k];);); nn = nn/2; matrix(nn, nn, n, k, denominator(m[n,k]));} \\ Michel Marcus, Jul 05 2018
Comments