cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-55 of 55 results.

A276064 Triangle read by rows: T(n,k) is the number of compositions of n with parts in {1,5} and having asymmetry degree equal to k (n>=0; 0<=k<=floor(n/6)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 4, 2, 4, 2, 6, 3, 8, 3, 8, 4, 4, 12, 4, 4, 10, 12, 6, 16, 12, 5, 16, 24, 8, 24, 28, 6, 26, 40, 8, 10, 36, 52, 8, 8, 40, 60, 32, 13, 56, 84, 32, 11, 58, 96, 80, 17, 84, 136, 88, 15, 80, 160, 160, 16, 23, 120, 220, 192, 16
Offset: 0

Views

Author

Emeric Deutsch, Aug 22 2016

Keywords

Comments

The asymmetry degree of a finite sequence of numbers is defined to be the number of pairs of symmetrically positioned distinct entries. Example: the asymmetry degree of (2,7,6,4,5,7,3) is 2, counting the pairs (2,3) and (6,5).
Number of entries in row n is 1 + floor(n/6).
Sum of entries in row n is A003520(n).
T(n,0) = A226516(n+11).
Sum_{k>=0} k*T(n,k) = A276065(n).

Examples

			Row 8 is [1,4] because the compositions of 8 with parts in {1,5} are 5111, 1511, 1151, 1115 and 11111111, having asymmetry degrees 1, 1, 1, 1, and 0, respectively.
Triangle starts:
  1;
  1;
  1;
  1;
  1;
  2;
  1, 2;
  2, 2.
		

References

  • S. Heubach and T. Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.

Crossrefs

Programs

  • Maple
    G := (1+z+z^5)/(1-z^2-2*t*z^6-z^10): Gser := simplify(series(G, z = 0, 30)): for n from 0 to 25 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 25 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form
  • Mathematica
    Table[TakeWhile[BinCounts[#, {0, 1 + Floor[n/4], 1}], # != 0 &] &@ Map[Total, Map[Map[Boole[# >= 1] &, BitXor[Take[# - 1, Ceiling[Length[#]/2]], Reverse@ Take[# - 1, -Ceiling[Length[#]/2]]]] &, Flatten[Map[Permutations, DeleteCases[IntegerPartitions@ n, {_, a_, _} /; Nor[a == 1, a == 5]]], 1]]], {n, 0, 25}] // Flatten (* Michael De Vlieger, Aug 22 2016 *)

Formula

G.f.: G(t,z) = (1+z+z^5)/(1-z^2-2*t*z^6-z^10). In the more general situation of compositions into a[1]=1} z^(a[j]), we have G(t,z) = (1 + F(z))/(1 - F(z^2) - t*(F(z)^2 - F(z^2))). In particular, for t=0 we obtain Theorem 1.2 of the Hoggatt et al. reference.

A370722 a(n) = Sum_{k=0..floor(n/7)} binomial(n-4*k,3*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 5, 11, 21, 36, 57, 85, 122, 173, 249, 371, 575, 918, 1485, 2398, 3830, 6030, 9369, 14422, 22107, 33909, 52226, 80888, 125925, 196706, 307653, 480873, 750275, 1168085, 1815191, 2817518, 4371772, 6785606, 10539893, 16384908, 25488736
Offset: 0

Views

Author

Seiichi Manyama, Feb 28 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -3, 1, 0, 0, 0, 1}, Table[1, 7], 50] (* Paolo Xausa, Mar 15 2024 *)
  • PARI
    a(n) = sum(k=0, n\7, binomial(n-4*k, 3*k));
    
  • PARI
    my(N=50, x='x+O('x^N)); Vec((1-x)^2/((1-x)^3-x^7))

Formula

G.f.: (1-x)^2/((1-x)^3 - x^7).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-7).

A052632 E.g.f. 1/(1-x-x^5).

Original entry on oeis.org

1, 1, 2, 6, 24, 240, 2160, 20160, 201600, 2177280, 29030400, 439084800, 7185024000, 124540416000, 2266635571200, 44460928512000, 941525544960000, 21341245685760000, 512189896458240000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{S=Sequence(Union(Z,Prod(Z,Z,Z,Z,Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[1/(1-x-x^5),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Sep 13 2019 *)

Formula

E.g.f.: -1/(-1+x^5+x)
D-finite Recurrence: {a(1)=1, a(0)=1, a(3)=6, a(2)=2, a(4)=24, (-n^5-15*n^4-274*n-120-85*n^3-225*n^2)*a(n) +(-5-n)*a(n+4) +a(n+5)=0}
Sum(1/3381*(256+320*_alpha^4+400*_alpha^3+500*_alpha^2+625*_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+_Z^5+_Z))*n!
a(n)=n!*A003520(n). - R. J. Mathar, Jun 03 2022

A292027 a(n) = a(n-7) + a(n-11), starting a(0)=a(1)=...= a(10) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 7, 7, 7, 8, 9, 9, 9, 12, 12, 12, 13, 16, 16, 16, 20, 21, 21, 22, 28, 28, 28, 33, 37, 37, 38, 48, 49, 49, 55, 65, 65, 66, 81, 86, 86, 93, 113, 114, 115, 136, 151, 151, 159, 194, 200, 201, 229, 264, 265, 274
Offset: 0

Views

Author

Jason Bruce, Sep 07 2017

Keywords

References

  • Kenneth H. Rosen, Discrete Mathematics and its Applications, McGraw-Hill, 2012, 501-503.

Crossrefs

Programs

  • Java
    import java.util.Arrays;
    public class IntegerSequences
    {
        public static void main(String[] args)
        {
            int j = 7;
            int k = 11;
            // Set N to the number of terms you would like to generate.
            int N = 200;
            long[] G = new long[N];
            for(int i=0; i
    				
  • Mathematica
    LinearRecurrence[{0,0,0,0,0,0,1,0,0,0,1},{1,1,1,1,1,1,1,1,1,1,1},80] (* Harvey P. Dale, Oct 09 2018 *)

Formula

G.f.: (x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)/(1 - x^7 - x^11). - R. J. Mathar and N. J. A. Sloane, Nov 10 2017

A306489 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of 1/(1 - Sum_{d|k} x^d).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 5, 1, 1, 1, 1, 3, 3, 8, 1, 1, 1, 2, 1, 6, 4, 13, 1, 1, 1, 1, 4, 1, 10, 6, 21, 1, 1, 1, 2, 1, 7, 2, 18, 9, 34, 1, 1, 1, 1, 3, 1, 13, 3, 31, 13, 55, 1, 1, 1, 2, 2, 6, 1, 25, 4, 55, 19, 89, 1, 1, 1, 1, 3, 3, 10, 1, 46, 5, 96, 28, 144, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 19 2019

Keywords

Comments

A(n,k) is the number of compositions (ordered partitions) of n into divisors of k.

Examples

			Square array begins:
  1,  1,  1,   1,  1,   1,  ...
  1,  1,  1,   1,  1,   1,  ...
  1,  2,  1,   2,  1,   2,  ...
  1,  3,  2,   3,  1,   4,  ...
  1,  5,  3,   6,  1,   7,  ...
  1,  8,  4,  10,  2,  13,  ...
		

Crossrefs

Columns k=1..7 give A000012, A000045 (for n > 0), A000930, A060945, A003520, A079958, A005709.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[1/(1 - Sum[x^d, {d, Divisors[k]}]), {x, 0, n}]][i - n + 1], {i, 0, 12}, {n, 0, i}] // Flatten

Formula

G.f. of column k: 1/(1 - Sum_{d|k} x^d).
Previous Showing 51-55 of 55 results.