cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-44 of 44 results.

A095678 Minimal sequence such that all triples of consecutive numbers have no common divisor greater than 1, but all three pairs within the triples are not coprime.

Original entry on oeis.org

6, 10, 15, 12, 20, 45, 18, 40, 75, 24, 50, 135, 36, 80, 225, 48, 100, 375, 54, 160, 405, 72, 200, 675, 96, 250, 1125, 108, 320, 1215, 144, 400, 1875, 162, 500, 2025, 192, 640, 3375, 216, 800, 3645, 288, 1000, 5625, 324, 1250, 6075, 384, 1280, 9375, 432
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 04 2004

Keywords

Crossrefs

Programs

  • Mathematica
    seq1[p_, q_, lim_] := Sort[Flatten[Table[p^i * q^j, {i, 1, Log[p, lim]}, {j, 1, Log[q, lim/p^i]}]]];
    seq[lim_] := Module[{s1 = seq1[2, 3, lim], s2 = seq1[2, 5, lim], s3 = seq1[3, 5, lim], ns}, ns = Length[s3]; Flatten[Transpose[{s1[[1;;ns]], s2[[1;;ns]], s3}]]]; seq[10^4] (* Amiram Eldar, Sep 29 2024 *)

Formula

gcd(a(n),a(n+1),a(n+2)) = 1, gcd(a(n),a(n+1)) > 1, gcd(a(n),a(n+2)) > 1 and gcd(a(n+1),a(n+2)) > 1.
A001221(a(n)) = 2; 2 <= A020639(a(n)) <= 3 <= A006530(a(n)) <= 5.
From Jianing Song, Jun 08 2022: (Start)
a(3n-2) = A033845(n) = 6*A003586(n);
a(3n-1) = A033846(n) = 10*A003592(n);
a(3n) = A033849(n) = 15*A003593(n). (End)
Sum_{n>=1} 1/a(n) = 7/8. - Amiram Eldar, Sep 29 2024

A231114 Numbers k dividing u(k), where the Lucas sequence is defined u(i) = u(i-1) - 4*u(i-2) with initial conditions u(0)=0, u(1)=1.

Original entry on oeis.org

1, 3, 5, 9, 15, 25, 27, 45, 75, 81, 125, 135, 171, 225, 243, 375, 405, 435, 465, 513, 625, 675, 729, 855, 1125, 1215, 1305, 1395, 1539, 1875, 2025, 2175, 2187, 2325, 2565, 3125, 3249, 3375, 3645, 3725, 3915, 4005, 4185, 4275, 4617, 5625, 6075, 6327, 6525, 6561
Offset: 1

Views

Author

Thomas M. Bridge, Nov 06 2013

Keywords

Comments

Every term (except leading term) is divisible by at least one of 3 or 5.
Furthermore, this sequence contains 3^i*5^j for all i, j >= 0, that is, A003593 is a subsequence.

Examples

			The sequence u(i) begins 0, 1, 1, -3, -7, 5, 33. Only for k = 1, 3, 5 does k divides u(k).
		

Crossrefs

Cf. A003593 (subsequence), A106853 (Lucas sequence).

Programs

  • Mathematica
    nn = 10000; s = LinearRecurrence[{1, -4}, {1, 1}, nn]; t = {}; Do[If[Mod[s[[n]], n] == 0, AppendTo[t, n]], {n, nn}]; t (* T. D. Noe, Nov 06 2013 *)

A340268 Composite numbers k>1 such that (s-1) | (d-1) for each d | k, where s = lpf(k) = A020639(k).

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96
Offset: 1

Views

Author

Maxim Karimov, Jan 02 2021

Keywords

Comments

Not a duplicate of A340058 because the complements A335902 and A340269 differ. - R. J. Mathar, Feb 16 2021

Crossrefs

Cf. A000010, A000961, A020639, A340058, A335902, A340269 (complement).
Contains all composite terms of at least A003586, A003591, A003592, A003593, A003596.

Programs

  • MATLAB
    n=300; % gives all terms of the sequence not exceeding n
    A=[];
    for i=2:n
        lpf=2;
        while mod(i,lpf)~=0
            lpf=lpf+1;
        end
        for d=1:floor(i/2)
            if mod(i,d)==0 && mod(d-1,lpf-1)~=0
                break
            elseif d==floor(i/2)
                A=[A i];
            end
        end
    end
    
  • Maple
    with(numtheory):
    q:= n-> (f-> andmap(d-> irem(d-1, f)=0, divisors(n)))(min(factorset(n))-1):
    select(not isprime and q, [$2..96])[];  # Alois P. Heinz, Feb 12 2021
  • Mathematica
    Select[Range[2, 96], Function[{n, s}, And[! PrimeQ@ n, AllTrue[Divisors[n] - 1, Mod[#, s] == 0 &]]] @@ {#, FactorInteger[#][[1, 1]] - 1} &] (* Michael De Vlieger, Feb 12 2021 *)
  • PARI
    isok(c) = if ((c>1) && !isprime(c), my(f=factor(c)[,1]); for (k=1, #f~, if ((f[k]-1) % (f[1]-1), return(0))); return(1)); \\ Michel Marcus, Jan 03 2021

A366786 a(n) = A073481(n)*A005117(n).

Original entry on oeis.org

1, 4, 9, 25, 12, 49, 20, 121, 169, 28, 45, 289, 361, 63, 44, 529, 52, 841, 60, 961, 99, 68, 175, 1369, 76, 117, 1681, 84, 1849, 92, 2209, 153, 2809, 275, 171, 116, 3481, 3721, 124, 325, 132, 4489, 207, 140, 5041, 5329, 148, 539, 156, 6241, 164, 6889, 425, 172
Offset: 1

Views

Author

Michael De Vlieger, Dec 16 2023

Keywords

Comments

Define f(x) to be lpf(k)*k, where lpf(k) = A020639(k). This sequence contains the mappings of f(x) across squarefree numbers A005117.
a(1) = 1 by definition. 1 is the empty product and has no least prime factor.
Define sequence R_k = { m : rad(m) | k }, where rad(n) = A007947(n) and k > 1 is squarefree. Then the sequence k*R_k contains all numbers divisible by squarefree k that are also not divisible by any prime q coprime to k.
Plainly, k is the first term in the sequence k*R_k, because 1 is the first term in R_k. Hence a(n) is the second term in k*R_k for n > 1, since lpf(k) is the second term in R_k.

Examples

			Let b(n) = A005117(n).
a(2) = 4 = b(2)*lpf(b(2)) = 2*lpf(2) = 2*2. In {2*A000079}, 4 is the second term.
a(5) = 12 = b(5)*lpf(b(5)) = 6*lpf(6) = 6*2. In {6*A003586}, 12 is the second term..
a(11) = 45 = b(11)*lpf(b(11)) = 15*lpf(15) = 15*3. In {15*A003593}, 45 is the second term, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 120; s = Select[Range[nn], SquareFreeQ];
    Array[#*FactorInteger[#][[1, 1]] &[s[[#]]] &, Length[s]]
  • PARI
    apply(x->(if (x==1,1, x*vecmin(factor(x)[,1]))), select(issquarefree, [1..150])) \\ Michel Marcus, Dec 17 2023
    
  • Python
    from math import isqrt
    from sympy import mobius, primefactors
    def A366786(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return (m:=bisection(f))*min(primefactors(m),default=1) # Chai Wah Wu, Aug 31 2024

Formula

a(n) = A065642(A005117(n)), n > 1.
a(n) = A285109(A005117(n)).
a(n) = A020639(A005117(n))*A005117(n).
For prime p, a(p) = p^2.
For composite squarefree k, a(k) = (p^2 * m) such that (p^2 * m) is in A364996.
Permutation of the union of {1}, A001248, and A366825.
Previous Showing 41-44 of 44 results.