cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A025626 Numbers of form 6^i*7^j, with i, j >= 0.

Original entry on oeis.org

1, 6, 7, 36, 42, 49, 216, 252, 294, 343, 1296, 1512, 1764, 2058, 2401, 7776, 9072, 10584, 12348, 14406, 16807, 46656, 54432, 63504, 74088, 86436, 100842, 117649, 279936, 326592, 381024, 444528, 518616, 605052, 705894, 823543, 1679616, 1959552
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[6^i*7^j, {i, 0, Log[6, n]}, {j, 0, Log[7, n/6^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (6*7)/((6-1)*(7-1)) = 7/5. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(6)*log(7)*n)) / sqrt(42). - Vaclav Kotesovec, Sep 25 2020
a(n) = 6^A025660(n) * 7^A025668(n). - R. J. Mathar, Jul 06 2025

A025631 Numbers of form 7^i*9^j, with i, j >= 0.

Original entry on oeis.org

1, 7, 9, 49, 63, 81, 343, 441, 567, 729, 2401, 3087, 3969, 5103, 6561, 16807, 21609, 27783, 35721, 45927, 59049, 117649, 151263, 194481, 250047, 321489, 413343, 531441, 823543, 1058841, 1361367, 1750329, 2250423, 2893401, 3720087, 4782969
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A003594.

Programs

  • Mathematica
    With[{nn=40},Take[Union[7^First[#] 9^Last[#]&/@Tuples[Range[0,nn/4],2]],nn]] (* Harvey P. Dale, Mar 06 2014 *)

Formula

Sum_{n>=1} 1/a(n) = (7*9)/((7-1)*(9-1)) = 21/16. - Amiram Eldar, Sep 24 2020
a(n) ~ exp(sqrt(2*log(7)*log(9)*n)) / sqrt(63). - Vaclav Kotesovec, Sep 24 2020
a(n) = 7^A025670(n) * 9^A025681(n). - R. J. Mathar, Jul 06 2025

A025614 Numbers of form 3^i*6^j, with i, j >= 0.

Original entry on oeis.org

1, 3, 6, 9, 18, 27, 36, 54, 81, 108, 162, 216, 243, 324, 486, 648, 729, 972, 1296, 1458, 1944, 2187, 2916, 3888, 4374, 5832, 6561, 7776, 8748, 11664, 13122, 17496, 19683, 23328, 26244, 34992, 39366, 46656, 52488, 59049, 69984, 78732, 104976, 118098
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[3^i*6^j, {i, 0, Log[3, n]}, {j, 0, Log[6, n/3^i]}]] // Sort (* Amiram Eldar, Sep 26 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (3*6)/((3-1)*(6-1)) = 9/5. - Amiram Eldar, Sep 26 2020
a(n) ~ exp(sqrt(2*log(3)*log(6)*n)) / sqrt(18). - Vaclav Kotesovec, Sep 26 2020
a(n) = 3^A025641(n) *6^A025657(n). - R. J. Mathar, Jul 06 2025

A306999 Numbers m such that 1 < gcd(m, 21) < m and m does not divide 21^e for e >= 0.

Original entry on oeis.org

6, 12, 14, 15, 18, 24, 28, 30, 33, 35, 36, 39, 42, 45, 48, 51, 54, 56, 57, 60, 66, 69, 70, 72, 75, 77, 78, 84, 87, 90, 91, 93, 96, 98, 99, 102, 105, 108, 111, 112, 114, 117, 119, 120, 123, 126, 129, 132, 133, 135, 138, 140, 141, 144, 150, 153, 154, 156, 159, 161
Offset: 1

Views

Author

Michael De Vlieger, Aug 22 2019

Keywords

Comments

Complement of the union of A003594 and A160545.
Analogous to A081062 and A105115 regarding terms 1 and 2 of A120944, respectively. This sequence applies to A120944(5) = 21.

Examples

			6 is in the sequence since gcd(6, 21) = 3 and 6 does not divide 21^e with integer e >= 0.
5 is not in the sequence since it is coprime to 21.
3 is not in the sequence since 3 | 21.
9 is not in the sequence since 9 | 21^2.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local g;
      g:= igcd(n,21);
      if g = 1 or g = n then return false fi;
      3^padic:-ordp(n,3)*7^padic:-ordp(n,7) < n
    end proc:
    select(filter, [$1..200]); # Robert Israel, Aug 28 2019
  • Mathematica
    With[{nn = 161, k = 21}, Select[Range@ nn, And[1 < GCD[#, k] < #, PowerMod[k, Floor@ Log2@ nn, #] != 0] &]]

A025642 Exponent of 3 (value of i) in n-th number of form 3^i*7^j.

Original entry on oeis.org

0, 1, 0, 2, 1, 3, 0, 2, 4, 1, 3, 5, 0, 2, 4, 6, 1, 3, 5, 7, 0, 2, 4, 6, 8, 1, 3, 5, 7, 0, 9, 2, 4, 6, 8, 1, 10, 3, 5, 7, 0, 9, 2, 11, 4, 6, 8, 1, 10, 3, 12, 5, 7, 0, 9, 2, 11, 4, 13, 6, 8, 1, 10, 3, 12, 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, 5, 14, 7, 0, 16, 9, 2, 11, 4, 13, 6, 15, 8, 1, 17, 10
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A003594.

Programs

  • Maple
    N:= 10^9: # for 3^i * 7^j <= N
    R:= sort([seq(seq(3^i*7^j, j=0 .. ilog[7](N/3^i)),i=0..ilog[3](N))]):
    map(padic:-ordp,R,3); # Robert Israel, Jun 04 2025

A025665 Exponent of 7 (value of j) in n-th number of form 3^i*7^j.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 2, 1, 0, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0, 4, 3, 2, 1, 5, 0, 4, 3, 2, 1, 5, 0, 4, 3, 2, 6, 1, 5, 0, 4, 3, 2, 6, 1, 5, 0, 4, 3, 7, 2, 6, 1, 5, 0, 4, 3, 7, 2, 6, 1, 5, 0, 4, 8, 3, 7, 2, 6, 1, 5, 0, 4, 8, 3, 7, 2, 6, 1, 5, 9, 0, 4, 8, 3, 7, 2, 6, 1, 5, 9, 0, 4, 8, 3, 7, 2, 6, 10, 1, 5, 9, 0
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A003594.

A036316 Composite numbers whose prime factors contain no digits other than 3 and 7.

Original entry on oeis.org

9, 21, 27, 49, 63, 81, 111, 147, 189, 219, 243, 259, 333, 343, 441, 511, 567, 657, 729, 777, 999, 1011, 1029, 1119, 1323, 1369, 1533, 1701, 1813, 1971, 2187, 2199, 2319, 2331, 2359, 2401, 2611, 2701, 2997, 3033, 3087, 3357, 3577, 3969, 4107, 4599, 5103
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Comments

All terms are a product of at least two terms of A020463. - David A. Corneth, Oct 09 2020

Crossrefs

Programs

  • Magma
    [n: n in [9..6000] | not IsPrime(n) and forall{f: f in PrimeDivisors(n) | Intseq(f) subset [3,7]}]; // Bruno Berselli, Aug 26 2013
  • Mathematica
    dpfQ[n_]:=Module[{d=Union[Flatten[IntegerDigits/@Transpose[FactorInteger[n]][[1]]]]}, !PrimeQ[n]&&(d == {3}||d == {7}||d == {3, 7})]; Select[Range[6000], dpfQ] (* Vincenzo Librandi, Aug 25 2013 *)

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A020463} (p/(p - 1)) - Sum_{p in A020463} 1/p - 1 = 0.3143000293... . - Amiram Eldar, May 22 2022

A057233 Numbers n such that n | 8^n + 7^n + 6^n.

Original entry on oeis.org

1, 3, 7, 9, 21, 27, 49, 51, 63, 81, 147, 189, 243, 343, 441, 567, 729, 931, 1029, 1323, 1593, 1701, 2187, 2349, 2401, 2493, 2499, 3087, 3969, 4077, 4131, 5103, 6561, 7203, 9261, 11907, 15309, 16807, 19683, 21609, 27783, 31743, 35721, 45927, 50421
Offset: 1

Views

Author

Robert G. Wilson v, Sep 20 2000

Keywords

Crossrefs

Contains A003594.

Programs

  • Maple
    select(n -> 6 &^ n + 7 &^ n + 8 &^ n) mod n = 0, [$1..10^5]); # Robert Israel, Jan 30 2020
  • Mathematica
    Select[ Range[ 10^6 ], Mod[ PowerMod[ 8, #, # ] + PowerMod[ 7, #, # ] + PowerMod[ 6, #, # ], # ] == 0 & ]

A057493 Numbers n such that n | 11^n + 10^n.

Original entry on oeis.org

1, 3, 7, 9, 21, 27, 49, 63, 81, 111, 147, 171, 189, 203, 243, 333, 343, 441, 513, 567, 609, 729, 777, 999, 1029, 1143, 1197, 1323, 1421, 1539, 1701, 1791, 1827, 2187, 2331, 2401, 2943, 2997, 3087, 3249, 3429, 3591, 3969, 4107, 4263, 4617, 5103, 5373
Offset: 1

Views

Author

Robert G. Wilson v, Sep 20 2000

Keywords

Comments

From Robert Israel, Feb 23 2017: (Start)
Contains A003594.
Every term other than 1 is divisible by 3 or 7.
If m and n are in the sequence, then so is m*n. (End)

Crossrefs

Cf. A003594.

Programs

  • Maple
    select(t -> (10 &^ t + 11 &^ t mod t = 0), [seq(i,i=1..10000,2)]); # Robert Israel, Feb 23 2017
  • Mathematica
    Select[ Range[ 10000 ], Mod[ PowerMod[ 11, #, # ] + PowerMod[ 10, #, # ], # ] == 0 & ]
  • PARI
    is(n)=Mod(11,n)^n+Mod(10,n)^n==0 \\ Charles R Greathouse IV, Feb 23 2017

A025721 Index of 7^n within sequence of numbers of form 3^i*7^j for i >= 0, j >= 1.

Original entry on oeis.org

1, 3, 7, 13, 21, 30, 41, 54, 69, 85, 103, 123, 145, 169, 194, 221, 250, 281, 313, 347, 383, 421, 460, 501, 544, 589, 636, 684, 734, 786, 840, 895, 952, 1011, 1072, 1134, 1198, 1264, 1332, 1402, 1473, 1546, 1621, 1698, 1776, 1856, 1938, 2022, 2108, 2195, 2284
Offset: 1

Views

Author

Keywords

Comments

Positions of zeros in A025642. - R. J. Mathar, Jul 06 2025

Examples

			a(1) = 1, a(2) = 3 and a(3) = 7 because the first 7 numbers of the form 3^i * 7^j with i >= 0 and j >= 1 are 7, 21, 49, 63, 147, 189 and 343. - _Robert Israel_, Aug 20 2024
		

Crossrefs

Cf. A003594.

Programs

  • Maple
    dA:= map(t -> 1+ilog[3](7^t), [$0..100]):
    ListTools:-PartialSums(dA); # Robert Israel, Aug 20 2024

Extensions

Name clarified by Robert Israel, Aug 20 2024
Previous Showing 11-20 of 21 results. Next