A009283
E.g.f.: exp(x + sinh(x)).
Original entry on oeis.org
1, 2, 4, 9, 24, 73, 246, 913, 3688, 16057, 74954, 372749, 1965156, 10942285, 64103006, 393902353, 2532010800, 16982676561, 118600412626, 860680689429, 6478753957948, 50505684285301, 407133297257542, 3389160344023385, 29098108436107592, 257364794368638009
Offset: 0
-
With[{nn=30},CoefficientList[Series[Exp[x+Sinh[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Dec 16 2022 *)
-
x='x+O('x^66); Vec(serlaplace(exp(x + sinh(x)))) /* Joerg Arndt, Sep 01 2012 */
A009623
Expansion of sinh(x).exp(sinh(x)).
Original entry on oeis.org
0, 1, 2, 4, 12, 36, 118, 456, 1816, 7888, 37354, 184064, 974372, 5444544, 31769182, 195982208, 1259350576, 8441139456, 59073098706, 428299217920, 3226127944764, 25165446157312, 202778723085382, 1689266143553536
Offset: 0
-
With[{nn=30},CoefficientList[Series[Sinh[x]*Exp[Sinh[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 07 2022 *)
A307979
Expansion of e.g.f. exp((cosh(x) - cos(x))/2) (even powers only).
Original entry on oeis.org
1, 1, 3, 16, 133, 1576, 24783, 495496, 12245353, 364768576, 12838252443, 526095538816, 24781014246253, 1326767681420416, 80013978835916583, 5392682199766283776, 403287063337529642833, 33261775377836063850496, 3009257393136250807614003, 297176659119237977183973376
Offset: 0
-
nmax = 19; Table[(CoefficientList[Series[Exp[(Cosh[x] - Cos[x])/2], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
a[n_] := a[n] = Sum[Boole[MemberQ[{2}, Mod[k, 4]]] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[2 n], {n, 0, 19}]
A330021
Expansion of e.g.f. exp(sinh(exp(x) - 1)).
Original entry on oeis.org
1, 1, 2, 6, 25, 128, 754, 5001, 37048, 303930, 2732395, 26657106, 280039786, 3149224991, 37729906686, 479570263690, 6442902231289, 91186621152460, 1355582225366134, 21112253012491481, 343672026658191836, 5834977672879651390, 103130592695715620419
Offset: 0
-
g:= proc(n) option remember; `if`(n=0, 1, add(
binomial(n-1, j-1)*irem(j, 2)*g(n-j), j=1..n))
end:
b:= proc(n, m) option remember; `if`(n=0,
g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..22); # Alois P. Heinz, Jun 23 2023
-
nmax = 22; CoefficientList[Series[Exp[Sinh[Exp[x] - 1]], {x, 0, nmax}], x] Range[0, nmax]!
A333883
Expansion of e.g.f. exp(Sum_{k>=0} x^(6*k + 1) / (6*k + 1)!).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 9, 37, 121, 331, 793, 1718, 5163, 32281, 217921, 1188709, 5291353, 20031170, 66744741, 267996541, 2030569465, 18368560519, 138812739409, 853152218102, 4409607501927, 19826125988257, 99717123889777, 871344991322017, 9658479225877057
Offset: 0
-
nmax = 30; CoefficientList[Series[Exp[Sum[x^(6 k + 1)/(6 k + 1)!, {k, 0, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Boole[MemberQ[{1}, Mod[k, 6]]] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 30}]
nmax = 30; CoefficientList[Series[Exp[x*HypergeometricPFQ[{}, {1/3, 1/2, 2/3, 5/6, 7/6}, x^6/46656]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2020 *)
A346746
E.g.f.: exp( (x * exp(x) - sinh(x)) / 2 ).
Original entry on oeis.org
1, 0, 1, 1, 5, 12, 58, 220, 1145, 5684, 33284, 198412, 1306355, 8945046, 65658392, 503505600, 4076565489, 34442610648, 304577372128, 2802673411280, 26840614943667, 266644080930194, 2745669007978680, 29243006731749200, 321810005123384617, 3653558357684804324
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[(x Exp[x] - Sinh[x])/2], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Floor[k/2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 25}]
A346747
E.g.f.: exp( (x * exp(x) + sinh(x)) / 2 ).
Original entry on oeis.org
1, 1, 2, 6, 20, 79, 357, 1783, 9788, 58361, 374581, 2571851, 18779928, 145163975, 1183028095, 10129297307, 90843458256, 851083079649, 8309588493841, 84370700833147, 889152061199144, 9709123938880103, 109677977422359703, 1279880472867083111, 15408386793144717536
Offset: 0
-
nmax = 24; CoefficientList[Series[Exp[(x Exp[x] + Sinh[x])/2], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Ceiling[k/2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]
A346748
E.g.f.: exp( (x * exp(-x) + sinh(x)) / 2 ).
Original entry on oeis.org
1, 1, 0, 0, 4, -1, -9, 103, -132, -535, 7731, -25117, -18072, 1078215, -6917039, 16312667, 186611792, -2454241183, 14370311311, 1436259867, -934228834216, 10658996229479, -54990712418263, -185381404760729, 7270919988375200, -80130195880201583, 391992372213719679
Offset: 0
-
nmax = 26; CoefficientList[Series[Exp[(x Exp[-x] + Sinh[x])/2], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n - 1, k - 1] Floor[(k + 1)/2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 26}]
A351891
Expansion of e.g.f. exp( sinh(sqrt(2)*x) / sqrt(2) ).
Original entry on oeis.org
1, 1, 1, 3, 9, 25, 105, 443, 1969, 10609, 57265, 338547, 2190969, 14498185, 104277849, 784965803, 6150938593, 51229928929, 440694547681, 3967606065891, 37247506348905, 361022009762809, 3645855348771273, 38001754007842715, 409302848055407761, 4558828622414199121
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[Sinh[Sqrt[2] x]/Sqrt[2]], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, 2 k] 2^k a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 25}]
A351892
Expansion of e.g.f. exp( sinh(sqrt(3)*x) / sqrt(3) ).
Original entry on oeis.org
1, 1, 1, 4, 13, 40, 205, 952, 4921, 31168, 189145, 1318528, 9843781, 74869888, 632536933, 5475991552, 49996774897, 485393809408, 4829958877105, 50858117779456, 554544498995965, 6259096187060224, 73822470722135293, 894846287081242624, 11261265009125680681, 146272258394568687616
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[Sinh[Sqrt[3] x]/Sqrt[3]], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, 2 k] 3^k a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 25}]
Comments