A166495
Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
Original entry on oeis.org
1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971510, 83886000, 335543850, 1342174800, 5368696800, 21474777600, 85899072000, 343596134400, 1374383923200, 5497533235200, 21990123110400, 87960453120000
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (3,3,3,3,3,3,3,3,3,3,3,-6).
-
R:=PowerSeriesRing(Integers(), 30);
f:= func< p,q,x | (1+x)*(1-x^12)/(1-(q+1)*x+(p+q)*x^12-p*x^13) >;
Coefficients(R!( f(6,3,x) )); // G. C. Greubel, Aug 02 2024
-
CoefficientList[Series[(1+t)*(1-t^12)/(1-4*t+9*t^12-6*t^13), {t, 0, 50}], t] (* G. C. Greubel, May 15 2016; Aug 02 2024 *)
coxG[{12,6,-3,30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Feb 19 2018 *)
-
def f(p,q,x): return (1+x)*(1-x^12)/(1-(q+1)*x+(p+q)*x^12-p*x^13)
def A166495_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( f(6,3,x) ).list()
A166495_list(30) # G. C. Greubel, Aug 02 2024
A166859
Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.
Original entry on oeis.org
1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886070, 335544240, 1342176810, 5368706640, 21474824160, 85899287040, 343597109760, 1374388285440, 5497552527360, 21990207651840, 87960820776960
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -6).
-
CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^13 - 3*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 25 2016 *)
A167106
Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^14 = I.
Original entry on oeis.org
1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544310, 1342177200, 5368708650, 21474834000, 85899333600, 343597324800, 1374389260800, 5497556889600, 21990226944000, 87960905318400
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -6).
-
CoefficientList[Series[(t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1) / (6*t^14 - 3*t^13 - 3*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 03 2016 *)
A167650
Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.
Original entry on oeis.org
1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177270, 5368709040, 21474836010, 85899343440, 343597371360, 1374389475840, 5497557864960, 21990231306240, 87960924610560
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -6).
-
CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^15 - 3*t^14 - 3*t^13 - 3*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 18 2016 *)
A168682
Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.
Original entry on oeis.org
1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836470, 85899345840, 343597383210, 1374389532240, 5497558126560, 21990232496640, 87960929948160
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,-6).
-
R:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( (1+t)*(1-t^17)/(1 -4*t +9*t^17 -6*t^18) )); // G. C. Greubel, Feb 22 2021
-
CoefficientList[Series[(1+t)*(1-t^17)/(1 -4*t +9*t^17 -6*t^18), {t, 0, 40}], t] (* G. C. Greubel, Aug 03 2016, Feb 22 2021 *)
coxG[{17, 6, -3, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Feb 22 2021 *)
-
Vec(Pol(vector(18,i,if(i<2||i>17,1,2))) / Pol(vector(18,i,if(i<2,6,i>17,1,-3)))+O(x^99)) \\ Charles R Greathouse IV, Aug 03 2016
-
def A168682_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+t)*(1-t^17)/(1 -4*t +9*t^17 -6*t^18) ).list()
A168682_list(40) # G. C. Greubel, Feb 22 2021
A168730
Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I.
Original entry on oeis.org
1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345910, 343597383600, 1374389534250, 5497558136400, 21990232543200, 87960930163200
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -6).
-
CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^18 - 3*t^17 - 3*t^16 - 3*t^15 - 3*t^14 - 3*t^13 - 3*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1), {t,0,50}], t] (* G. C. Greubel, Aug 06 2016 *)
A168778
Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^19 = I.
Original entry on oeis.org
1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345920, 343597383670, 1374389534640, 5497558138410, 21990232553040, 87960930209760
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -6).
-
CoefficientList[Series[(t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^19 - 3*t^18 - 3*t^17 - 3*t^16 - 3*t^15 - 3*t^14 - 3*t^13 - 3*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 12 2016 *)
A168826
Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^20 = I.
Original entry on oeis.org
1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345920, 343597383680, 1374389534710, 5497558138800, 21990232555050, 87960930219600
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -6).
-
CoefficientList[Series[(t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^20 - 3*t^19 - 3*t^18 - 3*t^17 - 3*t^16 - 3*t^15 - 3*t^14 - 3*t^13 - 3*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1), {t,0,100}], t] (* G. C. Greubel, Nov 22 2016 *)
A169114
Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^26 = I.
Original entry on oeis.org
1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345920, 343597383680, 1374389534720, 5497558138880, 21990232555520, 87960930222080
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -6).
-
With[{num=Total[2t^Range[25]]+t^26+1,den=Total[-3 t^Range[25]]+6t^26+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Sep 27 2013 *)
A169402
Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^32 = I.
Original entry on oeis.org
1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345920, 343597383680, 1374389534720, 5497558138880, 21990232555520, 87960930222080
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..165
- Index entries for linear recurrences with constant coefficients, signature (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -6).
Cf.
A003947 (G.f.: (1+x)/(1-4*x) ).
-
x='x+O('x^66); /* that many terms */
Vec((1+2*sum(k=1,31,x^k)+x^32)/(1-3*sum(k=1,31,x^k)+6*x^32)) /* show terms */
/* Joerg Arndt, Jun 26 2011 */
Comments