cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 57 results. Next

A168732 Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I.

Original entry on oeis.org

1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263232, 2539579392, 15237476352, 91424858112, 548549148672, 3291294892032, 19747769352192, 118486616113131, 710919696678660, 4265518180071225
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003949, although the two sequences are eventually different.
First disagreement at index 18: a(18) = 118486616113131, A003949(18) = 118486616113152. - Klaus Brockhaus, Mar 27 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A003949 (G.f.: (1+x)/(1-6*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^18 - 5*t^17 - 5*t^16 - 5*t^15 - 5*t^14 - 5*t^13 - 5*t^12 - 5*t^11 - 5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1), {t,0,50}], t] (* G. C. Greubel, Aug 06 2016 *)

Formula

G.f.: (t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^18 - 5*t^17 - 5*t^16 - 5*t^15 - 5*t^14 - 5*t^13 - 5*t^12 - 5*t^11 - 5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1).

A168780 Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^19 = I.

Original entry on oeis.org

1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263232, 2539579392, 15237476352, 91424858112, 548549148672, 3291294892032, 19747769352192, 118486616113152, 710919696678891, 4265518180073220
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003949, although the two sequences are eventually different.
First disagreement at index 19: a(19) = 710919696678891, A003949(19) = 710919696678912. - Klaus Brockhaus, Mar 25 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A003949 (G.f.: (1+x)/(1-6*x)).

Programs

  • Mathematica
    coxG[{19,15,-5}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 18 2015 *)
    CoefficientList[Series[(t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^19 - 5*t^18 - 5*t^17 - 5*t^16 - 5*t^15 - 5*t^14 - 5*t^13 - 5*t^12 - 5*t^11 - 5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 12 2016 *)

Formula

G.f.: (t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^19 - 5*t^18 - 5*t^17 - 5*t^16 - 5*t^15 - 5*t^14 - 5*t^13 - 5*t^12 - 5*t^11 - 5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1).

A168828 Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^20 = I.

Original entry on oeis.org

1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263232, 2539579392, 15237476352, 91424858112, 548549148672, 3291294892032, 19747769352192, 118486616113152, 710919696678912, 4265518180073451
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003949, although the two sequences are eventually different.
First disagreement at index 20: a(20) = 4265518180073451, A003949(20) = 4265518180073472. - Klaus Brockhaus, Apr 01 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A003949 (G.f.: (1+x)/(1-6*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^20 - 5*t^19 - 5*t^18 - 5*t^17 - 5*t^16 - 5*t^15 - 5*t^14 - 5*t^13 - 5*t^12 - 5*t^11 - 5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1), {t,0,100}], t] (* G. C. Greubel, Nov 22 2016 *)
    coxG[{20,15,-5}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 12 2019 *)

Formula

G.f.: (t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^20 - 5*t^19 - 5*t^18 - 5*t^17 - 5*t^16 - 5*t^15 - 5*t^14 - 5*t^13 - 5*t^12 - 5*t^11 - 5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1).

A169020 Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^24 = I.

Original entry on oeis.org

1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263232, 2539579392, 15237476352, 91424858112, 548549148672, 3291294892032, 19747769352192, 118486616113152, 710919696678912, 4265518180073472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003949, although the two sequences are eventually different.
First disagreement at index 24: a(24) = 5528111561375219691, A003949(24) = 5528111561375219712. - Klaus Brockhaus, Apr 20 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A003949 (G.f.: (1+x)/(1-6*x)).

Programs

  • Mathematica
    With[{num=Total[2t^Range[23]]+t^24+1,den=Total[-5 t^Range[23]]+15t^24+ 1},CoefficientList[Series[num/den,{t,0,20}],t]] (* Harvey P. Dale, Jun 29 2014 *)

Formula

G.f.: (t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^24 - 5*t^23 - 5*t^22 - 5*t^21 - 5*t^20 - 5*t^19 - 5*t^18 - 5*t^17 - 5*t^16 - 5*t^15 - 5*t^14 - 5*t^13 - 5*t^12 - 5*t^11 - 5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1).

A169404 Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^32 = I.

Original entry on oeis.org

1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263232, 2539579392, 15237476352, 91424858112, 548549148672, 3291294892032, 19747769352192, 118486616113152, 710919696678912, 4265518180073472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003949, although the two sequences are eventually different.
First disagreement is at index 32, the difference is 21. - Klaus Brockhaus, Jun 26 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A003949 (G.f.: (1+x)/(1-6*x) ).

Programs

  • Mathematica
    coxG[{32,15,-5}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 21 2020 *)
  • PARI
    x='x+O('x^66); /* that many terms */
    Vec((1+2*sum(k=1,31,x^k)+x^32)/(1-5*sum(k=1,31,x^k)+15*x^32))   /* show terms */
    /* Joerg Arndt, Jun 26 2011 */

Formula

G.f.: (t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^32 - 5*t^31 - 5*t^30 - 5*t^29 - 5*t^28 - 5*t^27 - 5*t^26 - 5*t^25 - 5*t^24 - 5*t^23 - 5*t^22 - 5*t^21 - 5*t^20 - 5*t^19 - 5*t^18 - 5*t^17 - 5*t^16 - 5*t^15 - 5*t^14 - 5*t^13 - 5*t^12 - 5*t^11 - 5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1).
G.f.: (1+2*sum(k=1..31,x^k)+x^32)/(1-5*sum(k=1..31,x^k)+15*x^32).

A170688 Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^50 = I.

Original entry on oeis.org

1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263232, 2539579392, 15237476352, 91424858112, 548549148672, 3291294892032, 19747769352192, 118486616113152, 710919696678912, 4265518180073472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003949, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
About the initial comment, first disagreement is at index 50 and the difference is 21. - Vincenzo Librandi, Dec 09 2012

Programs

  • Mathematica
    With[{num = Total[2 t^Range[49]] + t^50 + 1, den = Total[-5 t^Range[49]] + 15 t^50 + 1}, CoefficientList[Series[num/den, {t, 0, 40}], t]] (* Vincenzo Librandi, Dec 09 2012 *)

Formula

G.f. (t^50 + 2*t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 +
2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(15*t^50 - 5*t^49 - 5*t^48 - 5*t^47 - 5*t^46 - 5*t^45 - 5*t^44
- 5*t^43 - 5*t^42 - 5*t^41 - 5*t^40 - 5*t^39 - 5*t^38 - 5*t^37 - 5*t^36
- 5*t^35 - 5*t^34 - 5*t^33 - 5*t^32 - 5*t^31 - 5*t^30 - 5*t^29 - 5*t^28
- 5*t^27 - 5*t^26 - 5*t^25 - 5*t^24 - 5*t^23 - 5*t^22 - 5*t^21 - 5*t^20
- 5*t^19 - 5*t^18 - 5*t^17 - 5*t^16 - 5*t^15 - 5*t^14 - 5*t^13 - 5*t^12
- 5*t^11 - 5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 -
5*t^3 - 5*t^2 - 5*t + 1).

A270576 Expansion of g.f. (1+2*x)/(1-6*x).

Original entry on oeis.org

1, 8, 48, 288, 1728, 10368, 62208, 373248, 2239488, 13436928, 80621568, 483729408, 2902376448, 17414258688, 104485552128, 626913312768, 3761479876608, 22568879259648, 135413275557888, 812479653347328, 4874877920083968, 29249267520503808, 175495605123022848, 1052973630738137088
Offset: 0

Views

Author

Colin Barker, Mar 19 2016

Keywords

Comments

Partial sums are 1, 9, 57, 345, 2073, 12441, ...
Essentially the same as A084477. - R. J. Mathar, Mar 21 2016

Crossrefs

Cf. A000400 (powers of 6), A003949: (1+x)/(1-6*x), A084477.

Programs

  • PARI
    Vec((1+2*x)/(1-6*x) + O(x^30))

Formula

G.f.: (1+2*x)/(1-6*x).
a(n) = 6*a(n-1) for n>1.
a(n) = 8*6^(n-1) for n>0.
E.g.f.: (4*exp(6*x) - 1)/3. - Elmo R. Oliveira, Mar 25 2025

A162744 Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 7, 42, 231, 1260, 6825, 36960, 200025, 1082550, 5858475, 31704750, 171577875, 928536000, 5024998125, 27194002500, 147166963125, 796429856250, 4310074059375, 23325015131250, 126228998109375, 683118955312500
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003949, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    coxG[{3,15,-5}] (* The coxG program is at A169452 *) (* or *) LinearRecurrence[{5,5,-15},{1,7,42,231},30] (* Harvey P. Dale, Oct 02 2021 *)

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(15*t^3 - 5*t^2 - 5*t + 1)

A162941 Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

Original entry on oeis.org

1, 7, 42, 252, 1491, 8820, 52185, 308700, 1826160, 10802925, 63906150, 378045675, 2236381350, 13229622000, 78261652875, 462967596000, 2738748634125, 16201445085000, 95841881782500, 566965863568125, 3353964722666250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003949, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    coxG[{4,15,-5}] (* The coxG program is at A169452 *) (* or *) LinearRecurrence[ {5,5,5,-15},{1,7,42,252,1491},30] (* Harvey P. Dale, Mar 13 2018 *)

Formula

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^4 - 5*t^3 - 5*t^2 - 5*t + 1)

A164742 Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.

Original entry on oeis.org

1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959531, 11757060, 70541625, 423245340, 2539445580, 15236514720, 91418135760, 548503099200, 3290984303460, 19745700072525, 118472965958550, 710830388968875, 4264937893581750
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003949, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f.: (t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1).
Previous Showing 21-30 of 57 results. Next