cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 56 results. Next

A163953 Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.

Original entry on oeis.org

1, 9, 72, 576, 4608, 36864, 294876, 2358720, 18867492, 150921792, 1207229184, 9656672256, 77244089580, 617878417968, 4942433025684, 39534710232528, 316239654648960, 2529613056079872, 20234471292326844, 161856307428494112
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003951, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[9,72,576,4608,36864,294876];; for n in [7..30] do a[n]:=7*(a[n-1]+a[n-2]+a[n-3]+a[n-4]+a[n-5]) -28*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7) )); // G. C. Greubel, Aug 10 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7), {t, 0, 30}], t] (* G. C. Greubel, Aug 13 2017 *)
    coxG[{6, 28, -7}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 10 2019 *)
  • PARI
    my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7)) \\ G. C. Greubel, Aug 13 2017
    
  • Sage
    def A163953_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7)).list()
    A163953_list(30) # G. C. Greubel, Aug 10 2019
    

Formula

G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1).
a(n) = -28*a(n-6) + 7*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021

A164375 Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.

Original entry on oeis.org

1, 9, 72, 576, 4608, 36864, 294912, 2359260, 18873792, 150988068, 1207886400, 9662946048, 77302407168, 618409967616, 4947205424364, 39577048871472, 316611634855572, 2532855030486480, 20262535861599360, 162097851871033344
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003951, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[9, 72, 576, 4608, 36864, 294912, 2359260];; for n in [8..30] do a[n]:=7*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]+a[n-6]) -28*a[n-7]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^7)/(1-8*t+35*t^7-28*t^8) )); // G. C. Greubel, Aug 10 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^7)/(1-8*t+35*t^7-28*t^8), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^7)/(1-8*t+35*t^7-28*t^8), {t, 0, 30}], t] (* G. C. Greubel, Sep 17 2017 *)
    coxG[{7,28,-7}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 20 2019 *)
  • PARI
    my(t='t+O('t^30)); Vec((1+t)*(1-t^7)/(1-8*t+35*t^7-28*t^8)) \\ G. C. Greubel, Sep 17 2017
    
  • Sage
    def A164375_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^7)/(1-8*t+35*t^7-28*t^8)).list()
    A164375_list(30) # G. C. Greubel, Aug 10 2019
    

Formula

G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1).
a(n) = -28*a(n-7) + 7*Sum_{k=1..6} a(n-k). - Wesley Ivan Hurt, May 11 2021

A165787 Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

Original entry on oeis.org

1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959516, 9663675840, 77309404452, 618475217472, 4947801594624, 39582411595776, 316659283476480, 2533274193494016, 20266192953409536, 162129538870935552
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003951, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959516];; for n in [11..20] do a[n]:=7*Sum([1..9], j-> a[n-j]) -28*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 22 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^10)/(1-8*t+35*t^10-28*t^11) )); // G. C. Greubel, Sep 22 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^10)/(1-8*t+35*t^10-28*t^11), t, n+1), t, n), n = 0..20); # G. C. Greubel, Aug 10 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^10)/(1-8*t+35*t^10-28*t^11), {t, 0, 20}], t] (* G. C. Greubel, Apr 08 2016 *)
    coxG[{10, 28, -7}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 22 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((1+t)*(1-t^10)/(1-8*t+35*t^10-28*t^11)) \\ G. C. Greubel, Sep 22 2019
    
  • Sage
    def A165787_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^10)/(1-8*t+35*t^10-28*t^11)).list()
    A165787_list(20) # G. C. Greubel, Sep 22 2019
    

Formula

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1).

A166367 Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.

Original entry on oeis.org

1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676380, 77309410752, 618475283748, 4947802251840, 39582417869568, 316659341795328, 2533274725072896, 20266197726265344, 162129581215580160
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003951, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Maple
    seq(coeff(series((1+t)*(1-t^11)/(1-8*t+35*t^11-28*t^12), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 13 2020
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^11)/(1-8*t+35*t^11-28*t^12), {t,0,30}], t] (* G. C. Greubel, May 10 2016 *)
    coxG[{11,28,-7}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 07 2019 *)
  • Sage
    def A166367_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+t)*(1-t^11)/(1-8*t+35*t^11-28*t^12) ).list()
    A166367_list(30) # G. C. Greubel, Mar 13 2020

Formula

G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1).

A166541 Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.

Original entry on oeis.org

1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676416, 77309411292, 618475290048, 4947802318116, 39582418526784, 316659348069120, 2533274783391744, 20266198257844224, 162129585988435968
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003951, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^12)/(1-8*x+35*x^12-28*x^13) )); // G. C. Greubel, Aug 23 2024
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^12)/(1-8*t+35*t^12-28*t^13), {t, 0, 50}], t] (* G. C. Greubel, May 16 2016; Aug 23 2024 *)
    coxG[{12,28,-7, 30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 23 2024 *)
  • SageMath
    def A166541_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^12)/(1-8*x+35*x^12-28*x^13) ).list()
    A166541_list(30) # G. C. Greubel, Aug 23 2024

Formula

G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1).
From G. C. Greubel, Aug 23 2024: (Start)
a(n) = 7*Sum_{j=1..11} a(n-j) - 28*a(n-13).
G.f.: (1+x)*(1-x^12)/(1 - 8*x + 35*x^12 - 28*x^13). (End)

A166924 Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.

Original entry on oeis.org

1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676416, 77309411328, 618475290588, 4947802324416, 39582418593060, 316659348726336, 2533274789665536, 20266198316163072, 162129586520014848
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003951, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 28 2016 *)
    coxG[{13,28,-7}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 12 2023 *)

Formula

G.f.: (t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1).

A167110 Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^14 = I.

Original entry on oeis.org

1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676416, 77309411328, 618475290624, 4947802324956, 39582418599360, 316659348792612, 2533274790322752, 20266198322436864, 162129586578333696
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003951, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    coxG[{14,28,-7}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Sep 03 2015 *)
    CoefficientList[Series[(t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ (28*t^14 - 7*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 03 2016 *)

Formula

G.f.: (t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^14 - 7*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1).

A167658 Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.

Original entry on oeis.org

1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676416, 77309411328, 618475290624, 4947802324992, 39582418599900, 316659348798912, 2533274790389028, 20266198323094080, 162129586584607488
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003951, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^15 - 7*t^14 - 7*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 18 2016 *)
    coxG[{15,28,-7}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 27 2024 *)

Formula

G.f.: (t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^15 - 7*t^14 - 7*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1).

A168686 Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.

Original entry on oeis.org

1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676416, 77309411328, 618475290624, 4947802324992, 39582418599936, 316659348799488, 2533274790395868, 20266198323166656, 162129586585330980
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003951, although the two sequences are eventually different.
First disagreement at index 17: a(17) = 2533274790395868, A003951(17) = 2533274790395904. - Klaus Brockhaus, Mar 30 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A003951 (g.f.: (1+x)/(1-8*x)).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( (1+t)*(1-t^17)/(1 -8*t +35*t^17 -28*t^18) )); // G. C. Greubel, Mar 24 2021
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^17)/(1 -8*t +35*t^17 -28*t^18), {t, 0, 40}], t] (* G. C. Greubel, Aug 03 2016; Mar 24 2021 *)
    coxG[{17, 28, -7, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Mar 24 2021 *)
  • Sage
    def A168686_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+t)*(1-t^17)/(1 -8*t +35*t^17 -28*t^18) ).list()
    A168686_list(40) # G. C. Greubel, Mar 24 2021

Formula

G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ (28*t^17 - 7*t^16 - 7*t^15 - 7*t^14 - 7*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1).
G.f.: (1+t)*(1-t^17)/(1 - 8*t + 35*t^17 - 28*t^18). - G. C. Greubel, Mar 24 2021

A168734 Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I.

Original entry on oeis.org

1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676416, 77309411328, 618475290624, 4947802324992, 39582418599936, 316659348799488, 2533274790395904, 20266198323167196, 162129586585337280
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003951, although the two sequences are eventually different.
First disagreement at index 18: a(18) = 20266198323167196, A003951(18) = 20266198323167232. - Klaus Brockhaus, Mar 27 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A003951 (G.f.: (1+x)/(1-8*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^18 - 7*t^17 - 7*t^16 - 7*t^15 - 7*t^14 - 7*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1), {t,0,50}], t] (* G. C. Greubel, Aug 08 2016 *)

Formula

G.f.: (t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^18 - 7*t^17 - 7*t^16 - 7*t^15 - 7*t^14 - 7*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1).
Previous Showing 11-20 of 56 results. Next