A163953
Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
Original entry on oeis.org
1, 9, 72, 576, 4608, 36864, 294876, 2358720, 18867492, 150921792, 1207229184, 9656672256, 77244089580, 617878417968, 4942433025684, 39534710232528, 316239654648960, 2529613056079872, 20234471292326844, 161856307428494112
Offset: 0
-
a:=[9,72,576,4608,36864,294876];; for n in [7..30] do a[n]:=7*(a[n-1]+a[n-2]+a[n-3]+a[n-4]+a[n-5]) -28*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7) )); // G. C. Greubel, Aug 10 2019
-
seq(coeff(series((1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019
-
CoefficientList[Series[(1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7), {t, 0, 30}], t] (* G. C. Greubel, Aug 13 2017 *)
coxG[{6, 28, -7}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 10 2019 *)
-
my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7)) \\ G. C. Greubel, Aug 13 2017
-
def A163953_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7)).list()
A163953_list(30) # G. C. Greubel, Aug 10 2019
A164375
Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.
Original entry on oeis.org
1, 9, 72, 576, 4608, 36864, 294912, 2359260, 18873792, 150988068, 1207886400, 9662946048, 77302407168, 618409967616, 4947205424364, 39577048871472, 316611634855572, 2532855030486480, 20262535861599360, 162097851871033344
Offset: 0
-
a:=[9, 72, 576, 4608, 36864, 294912, 2359260];; for n in [8..30] do a[n]:=7*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]+a[n-6]) -28*a[n-7]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^7)/(1-8*t+35*t^7-28*t^8) )); // G. C. Greubel, Aug 10 2019
-
seq(coeff(series((1+t)*(1-t^7)/(1-8*t+35*t^7-28*t^8), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019
-
CoefficientList[Series[(1+t)*(1-t^7)/(1-8*t+35*t^7-28*t^8), {t, 0, 30}], t] (* G. C. Greubel, Sep 17 2017 *)
coxG[{7,28,-7}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 20 2019 *)
-
my(t='t+O('t^30)); Vec((1+t)*(1-t^7)/(1-8*t+35*t^7-28*t^8)) \\ G. C. Greubel, Sep 17 2017
-
def A164375_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^7)/(1-8*t+35*t^7-28*t^8)).list()
A164375_list(30) # G. C. Greubel, Aug 10 2019
A165787
Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
Original entry on oeis.org
1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959516, 9663675840, 77309404452, 618475217472, 4947801594624, 39582411595776, 316659283476480, 2533274193494016, 20266192953409536, 162129538870935552
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (7,7,7,7,7,7,7,7,7,-28).
-
a:=[9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959516];; for n in [11..20] do a[n]:=7*Sum([1..9], j-> a[n-j]) -28*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 22 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^10)/(1-8*t+35*t^10-28*t^11) )); // G. C. Greubel, Sep 22 2019
-
seq(coeff(series((1+t)*(1-t^10)/(1-8*t+35*t^10-28*t^11), t, n+1), t, n), n = 0..20); # G. C. Greubel, Aug 10 2019
-
CoefficientList[Series[(1+t)*(1-t^10)/(1-8*t+35*t^10-28*t^11), {t, 0, 20}], t] (* G. C. Greubel, Apr 08 2016 *)
coxG[{10, 28, -7}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 22 2019 *)
-
my(t='t+O('t^20)); Vec((1+t)*(1-t^10)/(1-8*t+35*t^10-28*t^11)) \\ G. C. Greubel, Sep 22 2019
-
def A165787_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^10)/(1-8*t+35*t^10-28*t^11)).list()
A165787_list(20) # G. C. Greubel, Sep 22 2019
A166367
Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
Original entry on oeis.org
1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676380, 77309410752, 618475283748, 4947802251840, 39582417869568, 316659341795328, 2533274725072896, 20266197726265344, 162129581215580160
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (7,7,7,7,7,7,7,7,7,7,-28).
-
seq(coeff(series((1+t)*(1-t^11)/(1-8*t+35*t^11-28*t^12), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 13 2020
-
CoefficientList[Series[(1+t)*(1-t^11)/(1-8*t+35*t^11-28*t^12), {t,0,30}], t] (* G. C. Greubel, May 10 2016 *)
coxG[{11,28,-7}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 07 2019 *)
-
def A166367_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+t)*(1-t^11)/(1-8*t+35*t^11-28*t^12) ).list()
A166367_list(30) # G. C. Greubel, Mar 13 2020
A166541
Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
Original entry on oeis.org
1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676416, 77309411292, 618475290048, 4947802318116, 39582418526784, 316659348069120, 2533274783391744, 20266198257844224, 162129585988435968
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (7,7,7,7,7,7,7,7,7,7, 7,-28).
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^12)/(1-8*x+35*x^12-28*x^13) )); // G. C. Greubel, Aug 23 2024
-
CoefficientList[Series[(1+t)*(1-t^12)/(1-8*t+35*t^12-28*t^13), {t, 0, 50}], t] (* G. C. Greubel, May 16 2016; Aug 23 2024 *)
coxG[{12,28,-7, 30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 23 2024 *)
-
def A166541_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^12)/(1-8*x+35*x^12-28*x^13) ).list()
A166541_list(30) # G. C. Greubel, Aug 23 2024
A166924
Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.
Original entry on oeis.org
1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676416, 77309411328, 618475290588, 4947802324416, 39582418593060, 316659348726336, 2533274789665536, 20266198316163072, 162129586520014848
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, -28).
-
CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 28 2016 *)
coxG[{13,28,-7}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 12 2023 *)
A167110
Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^14 = I.
Original entry on oeis.org
1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676416, 77309411328, 618475290624, 4947802324956, 39582418599360, 316659348792612, 2533274790322752, 20266198322436864, 162129586578333696
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, -28).
-
coxG[{14,28,-7}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Sep 03 2015 *)
CoefficientList[Series[(t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ (28*t^14 - 7*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 03 2016 *)
A167658
Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.
Original entry on oeis.org
1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676416, 77309411328, 618475290624, 4947802324992, 39582418599900, 316659348798912, 2533274790389028, 20266198323094080, 162129586584607488
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, -28).
-
CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^15 - 7*t^14 - 7*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 18 2016 *)
coxG[{15,28,-7}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 27 2024 *)
A168686
Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.
Original entry on oeis.org
1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676416, 77309411328, 618475290624, 4947802324992, 39582418599936, 316659348799488, 2533274790395868, 20266198323166656, 162129586585330980
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,-28).
-
R:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( (1+t)*(1-t^17)/(1 -8*t +35*t^17 -28*t^18) )); // G. C. Greubel, Mar 24 2021
-
CoefficientList[Series[(1+t)*(1-t^17)/(1 -8*t +35*t^17 -28*t^18), {t, 0, 40}], t] (* G. C. Greubel, Aug 03 2016; Mar 24 2021 *)
coxG[{17, 28, -7, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Mar 24 2021 *)
-
def A168686_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+t)*(1-t^17)/(1 -8*t +35*t^17 -28*t^18) ).list()
A168686_list(40) # G. C. Greubel, Mar 24 2021
A168734
Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I.
Original entry on oeis.org
1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676416, 77309411328, 618475290624, 4947802324992, 39582418599936, 316659348799488, 2533274790395904, 20266198323167196, 162129586585337280
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, -28).
-
CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^18 - 7*t^17 - 7*t^16 - 7*t^15 - 7*t^14 - 7*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1), {t,0,50}], t] (* G. C. Greubel, Aug 08 2016 *)
Comments