cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A340072 a(n) = phi(x) / gcd(x-1, phi(x)), where x = A003961(n), i.e., n with its prime factorization shifted one step towards larger primes.

Original entry on oeis.org

1, 1, 1, 3, 1, 4, 1, 9, 5, 3, 1, 6, 1, 5, 12, 27, 1, 20, 1, 18, 20, 12, 1, 36, 7, 16, 25, 30, 1, 6, 1, 81, 3, 9, 15, 15, 1, 11, 16, 27, 1, 20, 1, 18, 20, 28, 1, 54, 11, 42, 36, 12, 1, 100, 4, 45, 44, 15, 1, 72, 1, 36, 100, 243, 48, 48, 1, 54, 7, 12, 1, 180, 1, 40, 42, 66, 60, 64, 1, 162, 125, 21, 1, 120, 9, 23, 60, 108
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Comments

Prime shifted analog of A160595.

Crossrefs

Cf. A000010, A003961, A003972, A160595, A253885, A340071, A340073, A340075 (gives the odd part).
Cf. also A340082.

Programs

  • Maple
    f:= proc(n) local F,x,p,t;
      F:= ifactors(n)[2];
      x:= mul(nextprime(t[1])^t[2],t=F);
      p:= numtheory:-phi(x);
      p/igcd(x-1,p)
    end proc:
    map(f,[$1..100]); # Robert Israel, Dec 28 2020
  • Mathematica
    a[n_] := Module[{x, p, e, phi}, x = Product[{p, e} = pe; NextPrime[p]^e, {pe, FactorInteger[n]}]; phi = EulerPhi[x]; phi/GCD[x-1, phi]];
    Array[a, 100] (* Jean-François Alcover, Jan 04 2022 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A340072(n) = { my(x=A003961(n), u=eulerphi(x)); u/gcd(x-1, u); };

Formula

a(n) = A160595(A003961(n)).
a(n) = A003972(n) / A340071(n).

A349381 Dirichlet convolution of A003961 with A349125 (Dirichlet inverse of A064989), where A003961 and A064989 are fully multiplicative sequences that shift the prime factorization of n one step towards larger and smaller primes respectively.

Original entry on oeis.org

1, 2, 3, 6, 4, 6, 6, 18, 15, 8, 6, 18, 6, 12, 12, 54, 6, 30, 6, 24, 18, 12, 10, 54, 28, 12, 75, 36, 8, 24, 8, 162, 18, 12, 24, 90, 10, 12, 18, 72, 6, 36, 6, 36, 60, 20, 10, 162, 66, 56, 18, 36, 12, 150, 24, 108, 18, 16, 8, 72, 8, 16, 90, 486, 24, 36, 10, 36, 30, 48, 6, 270, 8, 20, 84, 36, 36, 36, 10, 216, 375, 12
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2021

Keywords

Comments

Multiplicative because both A003961 and A349125 are.
Convolving this with A349127 gives A003972.

Crossrefs

Cf. A003961, A064989, A349125, A349382 (Dirichlet inverse), A349383 (sum with it).
Cf. also A003972, A349127, and A349355, A349356 and A349384, A349385, and A349387.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A064989(n) = { my(f = factor(n)); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A349125(n) = (moebius(n)*A064989(n));
    A349381(n) = sumdiv(n,d,A003961(n/d)*A349125(d));

Formula

a(n) = Sum_{d|n} A003961(n/d) * A349125(d).
a(n) = A349383(n) - A349382(n).

A332463 Möbius transform of A332223.

Original entry on oeis.org

1, 1, 3, 3, 7, 4, 15, 2, 21, 9, 31, 13, 63, 4, 10, 42, 127, -3, 255, 14, 21, 88, 511, 22, 117, 320, 24, 97, 1023, -22, 2047, -36, 190, 1444, 82, 34, 4095, -200, 120, 306, 8191, 14, 16383, -59, 13, 4180, 32767, 30, 609, -103, 15494, -303, 65535, 30, 141, -32, -6, 8920, 131071, 132, 262143, 506030, 564, 834, 658, -149
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2020

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A008683(n/d) * A332223(d).

A339904 The odd part of {Euler totient function phi applied to the prime shifted n}: a(n) = A000265(A000010(A003961(n))).

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 5, 9, 5, 3, 3, 3, 1, 5, 3, 27, 9, 5, 11, 9, 5, 3, 7, 9, 21, 1, 25, 15, 15, 3, 9, 81, 3, 9, 15, 15, 5, 11, 1, 27, 21, 5, 23, 9, 15, 7, 13, 27, 55, 21, 9, 3, 29, 25, 9, 45, 11, 15, 15, 9, 33, 9, 25, 243, 3, 3, 35, 27, 7, 15, 9, 45, 39, 5, 21, 33, 15, 1, 41, 81, 125, 21, 11, 15, 27, 23, 15, 27, 3, 15
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2020

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A339904(n) = if(1==n,n,my(f=factor(n)); prod(i=1,#f~,my(q=nextprime(1+f[i,1])); A000265(q-1)*(q^(f[i,2]-1))));
    
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A339903(n) = A000265(eulerphi(A003961(n)));

Formula

Multiplicative with a(p^e) = A000265(q-1) * q^(e-1), where q = A151800(p), the next prime larger than p.
For all squarefree numbers k, a(k) = A339903(k).

A347136 a(n) = Sum_{d|n} d * A003961(n/d), where A003961 shifts the prime factorization of its argument one step towards larger primes.

Original entry on oeis.org

1, 5, 8, 19, 12, 40, 18, 65, 49, 60, 24, 152, 30, 90, 96, 211, 36, 245, 42, 228, 144, 120, 52, 520, 109, 150, 272, 342, 60, 480, 68, 665, 192, 180, 216, 931, 78, 210, 240, 780, 84, 720, 90, 456, 588, 260, 100, 1688, 247, 545, 288, 570, 112, 1360, 288, 1170, 336, 300, 120, 1824, 128, 340, 882, 2059, 360, 960, 138
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2021

Keywords

Comments

Dirichlet convolution of the identity function (A000027) with the prime shifted identity (A003961). Multiplicative because both A000027 and A003961 are.
Dirichlet convolution of Euler phi (A000010) with the prime shifted sigma (A003973).
Dirichlet convolution of sigma (A000203) with the prime shifted phi (A003972).
Inverse Möbius transform of A347137.

Crossrefs

Cf. A003961, A003972, A003973, A151800, A347121, A347137 (Möbius transform).

Programs

  • Mathematica
    f[p_, e_] := ((np = NextPrime[p])^(e + 1) - p^(e + 1))/(np - p); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 24 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A347136(n) = sumdiv(n,d,d*A003961(n/d));

Formula

a(n) = Sum_{d|n} d * A003961(n/d).
a(n) = Sum_{d|n} A000010(n/d) * A003973(d).
a(n) = Sum_{d|n} A000203(n/d) * A003972(d).
a(n) = Sum_{d|n} A347137(d).
For all primes p, a(p) = p + A003961(p).
a(n) = A347121(n) + 2*n.
Multiplicative with a(p^e) = (A151800(p)^(e+1) - p^(e+1))/(A151800(p)-p). - Amiram Eldar, Aug 24 2021

A353789 Multiplicative with a(p^e) = (q - 1) * q^(e-1) * p^e, where q is the least prime greater than p.

Original entry on oeis.org

1, 4, 12, 24, 30, 48, 70, 144, 180, 120, 132, 288, 208, 280, 360, 864, 306, 720, 418, 720, 840, 528, 644, 1728, 1050, 832, 2700, 1680, 870, 1440, 1116, 5184, 1584, 1224, 2100, 4320, 1480, 1672, 2496, 4320, 1722, 3360, 1978, 3168, 5400, 2576, 2444, 10368, 5390, 4200, 3672, 4992, 3074, 10800, 3960, 10080, 5016, 3480
Offset: 1

Views

Author

Antti Karttunen, May 10 2022

Keywords

Comments

Question: Does a(n) divide A353790(n) only when n=1? Compare to A353764.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := ((q = NextPrime[p]) - 1) * q^(e - 1) * p^e; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 10 2022 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A353789(n) = (n * eulerphi(A003961(n)));
    
  • Python
    from math import prod
    from sympy import nextprime, factorint
    def A353789(n): return prod((q:= nextprime(p))**(e-1)*p**e*(q-1) for p, e in factorint(n).items()) # Chai Wah Wu, May 10 2022

Formula

Multiplicative with a(p^e) = (q - 1) * q^(e-1) * p^e, where q is the least prime greater than p.
a(n) = A353749(A003961(n)) = n * A003972(n).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} ((p^3-p^2-p+1)/(p^3 - p*q)) = 0.836506229..., where q(p) = nextprime(p) = A151800(p). - Amiram Eldar, Dec 31 2022

A337544 a(n) = 2*phi(A003961(n)) - A003961(n).

Original entry on oeis.org

1, 1, 3, 3, 5, 1, 9, 9, 15, 3, 11, 3, 15, 7, 13, 27, 17, 5, 21, 9, 25, 9, 27, 9, 35, 13, 75, 21, 29, -9, 35, 81, 31, 15, 43, 15, 39, 19, 43, 27, 41, -5, 45, 27, 65, 25, 51, 27, 99, 21, 49, 39, 57, 25, 53, 63, 61, 27, 59, -27, 65, 33, 125, 243, 73, -3, 69, 45, 79, 9, 71, 45, 77, 37, 91, 57, 97, 1, 81, 81, 375, 39, 87, -15, 83
Offset: 1

Views

Author

Antti Karttunen, Sep 21 2020

Keywords

Crossrefs

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f);
    A337544(n) = (2*eulerphi(A003961(n)) - A003961(n));

Formula

a(n) = A083254(A003961(n)).
a(n) = 2*A003972(n) - A003961(n).

A340073 a(n) = (x-1) / gcd(x-1, phi(x)), where x = A003961(n), i.e., n with its prime factorization shifted one step towards larger primes.

Original entry on oeis.org

0, 1, 1, 4, 1, 7, 1, 13, 6, 5, 1, 11, 1, 8, 17, 40, 1, 37, 1, 31, 27, 19, 1, 67, 8, 25, 31, 49, 1, 13, 1, 121, 4, 14, 19, 28, 1, 17, 21, 47, 1, 41, 1, 29, 29, 43, 1, 101, 12, 73, 47, 19, 1, 187, 5, 74, 57, 23, 1, 157, 1, 55, 137, 364, 59, 97, 1, 85, 9, 23, 1, 337, 1, 61, 61, 103, 71, 127, 1, 283, 156, 32, 1, 247, 11
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Comments

Prime shifted analog of A160596.

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A340073(n) = { my(x=A003961(n)); (x-1)/gcd(x-1, eulerphi(x)); };

Formula

a(n) = A160596(A003961(n)).
a(n) = A253885(n-1) / A340071(n) = (A003961(n)-1) / A340071(n).

A347137 a(n) = Sum_{d|n} phi(d) * A003961(n/d), where A003961 shifts the prime factorization of its argument one step towards larger primes, and phi is Euler totient function.

Original entry on oeis.org

1, 4, 7, 14, 11, 28, 17, 46, 41, 44, 23, 98, 29, 68, 77, 146, 35, 164, 41, 154, 119, 92, 51, 322, 97, 116, 223, 238, 59, 308, 67, 454, 161, 140, 187, 574, 77, 164, 203, 506, 83, 476, 89, 322, 451, 204, 99, 1022, 229, 388, 245, 406, 111, 892, 253, 782, 287, 236, 119, 1078, 127, 268, 697, 1394, 319, 644, 137, 490
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2021

Keywords

Comments

Dirichlet convolution of Euler phi (A000010) with the prime shift function (A003961). Multiplicative because both A000010 and A003961 are.
Dirichlet convolution of the identity function (A000027) with the prime shifted phi (A003972).
Möbius transform of A347136.

Crossrefs

Cf. A000010, A000027, A000040, A001043, A003961, A003972, A008683, A151800, A347122, A347136 (inverse Möbius transform).
Cf. also A018804, A347237.

Programs

  • Mathematica
    f[p_, e_] := (q = NextPrime[p])^e + (p - 1)*(q^e - p^e)/(q - p); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2023 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A347137(n) = sumdiv(n,d,eulerphi(n/d)*A003961(d));

Formula

a(n) = Sum_{d|n} A000010(n/d) * A003961(d).
a(n) = Sum_{d|n} d * A003972(n/d).
a(n) = Sum_{d|n} A008683(n/d) * A347136(d).
a(n) = A347122(n) + 2*A000010(n).
a(A000040(n)) = A001043(n) - 1.
Multiplicative with a(p^e) = q(p)^e + (p-1)*(q(p)^e - p^e)/(q(p) - p), where q(p) = nextprime(p) = A151800(p). - Amiram Eldar, Sep 16 2023

A347376 Möbius transform of A250469.

Original entry on oeis.org

1, 2, 4, 6, 6, 8, 10, 12, 20, 18, 12, 12, 16, 26, 24, 24, 18, 16, 22, 24, 40, 48, 28, 24, 42, 56, 40, 36, 30, 24, 36, 48, 68, 78, 60, 36, 40, 86, 74, 48, 42, 32, 46, 60, 60, 104, 52, 48, 110, 78, 102, 72, 58, 68, 72, 72, 118, 138, 60, 48, 66, 144, 80, 96, 96, 52, 70, 96, 142, 84, 72, 72, 78, 176, 108, 108, 120, 70
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2021

Keywords

Comments

Question: Are all terms positive?

Crossrefs

Programs

  • PARI
    up_to = 10000;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A250469(n) = if(1==n,n,my(spn = nextprime(1+A020639(n)), c = A078898(n), k = 0); while(c, k++; if((1==k)||(A020639(k)>=spn),c -= 1)); (k*spn));
    A347376(n) = sumdiv(n,d,moebius(n/d)*A250469(d));

Formula

a(n) = Sum_{d|n} A008683(n/d) * A250469(d).
a(n) = A003972(n) - A347377(n).
Previous Showing 11-20 of 43 results. Next