cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 93 results. Next

A337382 Numbers k for which A003973(k) < 2*sigma(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 22, 23, 25, 26, 29, 31, 33, 34, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 116, 118, 119, 121, 122, 123, 127, 129, 131, 133, 134, 137, 139, 141
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2020

Keywords

Crossrefs

Cf. A337381 (complement).
Positions of zeros in A337383.
Subsequence of A337379.
Cf. also A246281.

Programs

  • PARI
    A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); };
    isA337382(n) = (A003973(n)<2*sigma(n));

A336931 Difference between the 2-adic valuation of A003973(n) [= the sum of divisors of the prime shifted n] and the 2-adic valuation of the number of divisors of n.

Original entry on oeis.org

0, 1, 0, 0, 2, 1, 1, 1, 0, 3, 0, 0, 0, 2, 2, 0, 1, 1, 2, 2, 1, 1, 0, 1, 0, 1, 0, 1, 4, 3, 0, 1, 0, 2, 3, 0, 0, 3, 0, 3, 1, 2, 3, 0, 2, 1, 0, 0, 0, 1, 1, 0, 1, 1, 2, 2, 2, 5, 0, 2, 1, 1, 1, 0, 2, 1, 2, 1, 0, 4, 0, 1, 3, 1, 0, 2, 1, 1, 1, 2, 0, 2, 0, 1, 3, 4, 4, 1, 0, 3, 1, 0, 0, 1, 4, 1, 0, 1, 0, 0, 2, 2, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 17 2020

Keywords

Comments

Note that A295664(n) = A295664(A003961(n)).

Crossrefs

Cf. A003961, A003973, A007814, A007913, A295664, A336930 (positions of zeros), A336932, A336937.

Programs

  • PARI
    A007814(n) = valuation(n, 2);
    A336931(n) = { my(f=factor(n)); sum(i=1, #f~, (f[i, 2]%2) * (A007814(1+nextprime(1+f[i, 1]))-1)); };
    
  • PARI
    A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); };
    A007814(n) = valuation(n, 2);
    A336931(n) = (A007814(A003973(n)) - A007814(numdiv(n)));
    
  • Python
    from math import prod
    from sympy import factorint, nextprime, divisor_count
    def A336931(n): return (~(m:=prod(((q:=nextprime(p))**(e+1)-1)//(q-1) for p,e in factorint(n).items()))& m-1).bit_length()-(~(k:=int(divisor_count(n))) & k-1).bit_length() # Chai Wah Wu, Jul 05 2022

Formula

Additive with a(p^e) = 0 when e is even, a(p^e) = A007814(1+A003961(p))-1 when e is odd.
a(n) = A336932(n) - A295664(n).
a(n) = a(A007913(n)).

A337384 Numbers k for which A003973(k) is equal to 2*sigma(k).

Original entry on oeis.org

6, 14, 15, 35, 286, 470, 715, 874, 969, 2001, 2185, 2261, 3021, 4669, 7049, 10509, 24521, 30362, 34694, 34918, 46189, 54610, 58102, 58179, 62698, 65570, 69513, 73628, 75905, 79431, 82510, 86735, 87295, 94658, 95381, 108862, 109810, 120524, 133023, 135751, 144001, 145255, 147572, 156745, 162197, 185339, 192062, 216717
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2020

Keywords

Crossrefs

Subsequence of A337381.

Programs

  • Mathematica
    Select[Range[250000], If[# == 1, 1, DivisorSigma[1, Apply[Times, FactorInteger[#] /. {p_, e_} /; e > 0 :> Prime[PrimePi@ p + 1]^e] ]] == 2 DivisorSigma[1, #] &] (* Michael De Vlieger, Aug 27 2020 *)
  • PARI
    A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); };
    isA337384(n) = (A003973(n)==2*sigma(n));

A353796 Numbers k such that k divides A353790(k), where A353790(n) = phi(A003973(n)) * A064989(A003973(n)).

Original entry on oeis.org

1, 2, 4, 8, 12, 24, 36, 44, 72, 96, 112, 128, 132, 160, 180, 220, 288, 336, 352, 360, 384, 396, 480, 528, 560, 640, 660, 880, 1044, 1056, 1152, 1232, 1344, 1404, 1440, 1680, 1760, 1920, 1980, 2088, 2352, 2376, 2464, 2496, 2640, 3168, 3600, 3696, 3920, 4032, 4400, 4736, 5220, 5280, 5376, 5760, 5824, 6075, 6144, 6160
Offset: 1

Views

Author

Antti Karttunen, May 12 2022

Keywords

Comments

Of 5263 initial terms (terms < 2^32), only 67 are odd, and of these, only two, 1 and 1525391261 (= 503^2 * 6029) are in A007310. Of 5263 initial terms, 4653 are multiples of 3, 2331 are multiples of 81, and 3780 are multiples of 5.

Crossrefs

Cf. A000010, A000203, A003961, A003973, A353790, A353797 (subsequence).
Cf. also A353795.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A064989(n) = { my(f=factor(n>>valuation(n, 2))); for(i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f); };
    A353790(n) = { my(s=sigma(A003961(n))); (eulerphi(s)*A064989(s)); };
    isA353796(n) = !(A353790(n)%n);

A336919 Numbers k such that A000005(k) does not divide A003973(k); numbers k for which A336839(k) > 1.

Original entry on oeis.org

4, 9, 16, 18, 20, 32, 36, 44, 45, 48, 49, 64, 68, 72, 80, 81, 90, 98, 99, 100, 112, 116, 124, 144, 153, 160, 162, 164, 169, 176, 180, 192, 196, 198, 208, 220, 225, 236, 240, 244, 245, 252, 256, 261, 279, 284, 288, 292, 304, 306, 320, 324, 336, 338, 340, 352, 356, 360, 361, 369, 392, 396, 400, 404, 405, 428, 432, 441
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2020

Keywords

Comments

Numbers k such that A003961(k) is not in A003601, but in A049642.

Crossrefs

Cf. A336918 (complement).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA336919(n) = !!(sigma(A003961(n))%numdiv(n));

A336930 Numbers k such that the 2-adic valuation of A003973(k), the sum of divisors of the prime shifted k is equal to the 2-adic valuation of the number of divisors of k.

Original entry on oeis.org

1, 3, 4, 9, 11, 12, 13, 16, 23, 25, 27, 31, 33, 36, 37, 39, 44, 47, 48, 49, 52, 59, 64, 69, 71, 75, 81, 83, 89, 92, 93, 97, 99, 100, 107, 108, 109, 111, 117, 121, 124, 131, 132, 139, 141, 143, 144, 147, 148, 151, 156, 167, 169, 176, 177, 179, 188, 191, 192, 193, 196, 207, 208, 213, 225, 227, 229, 236, 239, 243, 249, 251
Offset: 1

Views

Author

Antti Karttunen, Aug 17 2020

Keywords

Comments

Numbers k for which A295664(k) is equal to A336932(k). Note that A295664(A003961(n)) = A295664(n).
Numbers k such that A003961(A007913(k)) [or equally, A007913(A003961(k))] is in A004613, i.e., has only prime divisors of the form 4k+1.
Subsequences include squares (A000290), and also primes p which when prime-shifted [as A003961(p)] become primes of the form 4k+1 (A002144), and all their powers as well as the products between these.

Crossrefs

Programs

  • PARI
    A007814(n) = valuation(n, 2);
    A336931(n) = { my(f=factor(n)); sum(i=1, #f~, (f[i, 2]%2) * (A007814(1+nextprime(1+f[i, 1]))-1)); };
    isA336930(n) = !A336931(n);
    
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA004613(n) = (1==(n%4) && 1==factorback(factor(n)[, 1]%4)); \\ After code in A004613.
    isA336930(n) = isA004613(A003961(core(n)));
    
  • Python
    from math import prod
    from itertools import count, islice
    from sympy import factorint, nextprime, divisor_count
    def A336930_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:(~(m:=prod(((q:=nextprime(p))**(e+1)-1)//(q-1) for p,e in factorint(n).items()))& m-1).bit_length()==(~(k:=int(divisor_count(n))) & k-1).bit_length(),count(max(startvalue,1)))
    A336930_list = list(islice(A336930_gen(),30)) # Chai Wah Wu, Jul 05 2022

A337335 a(n) = gcd(A048673(n), 1+A003973(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 29, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 19, 1, 13, 1, 1, 1, 13, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2020

Keywords

Crossrefs

Cf. A003961, A003973, A048673, A337337, A337342 (positions where equal to A048673).
Cf. also A336850.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A337335(n) = { my(s=A003961(n)); gcd((1+s)/2, 1+sigma(s)); };

Formula

a(n) = gcd(A048673(n), 1+A003973(n)) = (n) = gcd((1+A003961(n))/2, 1+sigma(A003961(n))).
For all n>= 1, a(A000290(n)) = A337337(n).

A353795 Numbers k such that k divides A353794(k), where A353794(n) = A003958(A003973(n)) * A064989(A003973(n)).

Original entry on oeis.org

1, 4, 12, 24, 36, 44, 72, 96, 112, 132, 180, 220, 360, 384, 396, 400, 480, 560, 660, 784, 832, 864, 1044, 1056, 1188, 1200, 1344, 1920, 1980, 2088, 2352, 2376, 2496, 2800, 3168, 3600, 3920, 4320, 4736, 5220, 5280, 5376, 5824, 5940, 6800, 6912, 7056, 7200, 7488, 8400, 8800, 9504, 9900, 10000, 10440, 10800, 11484
Offset: 1

Views

Author

Antti Karttunen, May 12 2022

Keywords

Comments

Of 2608 initial terms, only 188 are not in A353796. The first three of these are: 400, 784, 832.

Crossrefs

Programs

  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A064989(n) = { my(f=factor(n>>valuation(n,2))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A353794(n) = { my(s=sigma(A003961(n))); (A003958(s)*A064989(s)); };
    isA353795(n) = !(A353794(n)%n);

A353797 Numbers k such that k*A003557(A003961(k)) divides A353790(k), where A353790(n) = phi(A003973(n)) * A064989(A003973(n)).

Original entry on oeis.org

1, 2, 4, 44, 132, 220, 396, 660, 1980, 3920, 4400, 8800, 11484, 13200, 13328, 22000, 26400, 30800, 39984, 57420, 66640, 74800, 92400, 119952, 149600, 199920, 224400, 269892, 277200, 448800, 523600, 599760, 673200, 771012, 1063692, 1345792, 1346400, 1570800, 3478608, 4037376, 4712400, 5664400, 6344448, 8038800, 10574080
Offset: 1

Views

Author

Antti Karttunen, May 12 2022

Keywords

Comments

Note that A003557(A003961(n)) [= A003961(A003557(n))] is a divisor of A003972(n), therefore the set of k such that A353789(k) divides A353790(k) is a subset of this sequence.
Of 101 initial terms (terms < 2^32) all others apart from a(1) = 1 and a(2) = 2 are multiples of 4.

Crossrefs

Programs

  • PARI
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A064989(n) = { my(f=factor(n>>valuation(n, 2))); for(i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f); };
    A353790(n) = { my(s=sigma(A003961(n))); (eulerphi(s)*A064989(s)); };
    isA353797(n) = !(A353790(n)%(n*A003557(A003961(n))));

A355933 a(n) = A003973(n) / gcd(sigma(n), A003973(n)), where A003973(n) = sigma(A003961(n)) and A003961 is fully multiplicative with a(p) = nextprime(p).

Original entry on oeis.org

1, 4, 3, 13, 4, 2, 3, 8, 31, 16, 7, 39, 9, 2, 2, 121, 10, 124, 6, 52, 9, 14, 5, 4, 57, 12, 39, 39, 16, 8, 19, 52, 7, 40, 2, 31, 21, 8, 27, 32, 22, 3, 12, 13, 124, 5, 9, 363, 7, 76, 5, 117, 10, 26, 14, 4, 9, 64, 31, 26, 34, 19, 93, 1093, 12, 7, 18, 130, 15, 8, 37, 248, 40, 28, 171, 78, 7, 18, 21, 484, 71, 88, 15, 117
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2022

Keywords

Comments

Numerator of ratio A003973(n) / A000203(n). This sequence gives the numerators when presented in its lowest terms, while A355934 gives the denominators. As both A000203 and A003973 are multiplicative sequences, their ratio is also: 1, 4/3, 3/2, 13/7, 4/3, 2/1, 3/2, 8/3, 31/13, 16/9, 7/6, 39/14, 9/7, 2/1, 2/1, 121/31, 10/9, 124/39, 6/5, etc.

Crossrefs

Cf. A000203, A003961, A003973, A355932, A355934 (denominators).
Cf. also A341525, A349161.

Programs

  • Mathematica
    f[p_, e_] := ((q = NextPrime[p])^(e + 1) - 1)/(q - 1); a[1] = 1; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n] / DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); };
    A355933(n) = { my(u=A003973(n)); (u/gcd(sigma(n), u)); };

Formula

a(n) = A003973(n) / A355932(n) = A003973(n) / gcd(A000203(n), A003973(n)).
Previous Showing 11-20 of 93 results. Next