cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 196 results. Next

A282546 Coefficients in q-expansion of E_2*E_4^4, where E_2 and E_4 are respectively the Eisenstein series A006352 and A004009.

Original entry on oeis.org

1, 936, 331128, 52972704, 3355523352, 16684536816, -1540796901408, -39871325253312, -522168659242920, -4651083548616312, -31647933913392432, -175516717881381408, -827283695234707872, -3413277291552455376, -12598120840018061376, -42296015537631706176
Offset: 0

Views

Author

Seiichi Manyama, Feb 18 2017

Keywords

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A282012 (E_4^4).
Cf. A282019 (E_2*E_4), A282101 (E_2*E_4^2), A282549 (E_2*E_4^3), this sequence (E_2*E_4^4).

Programs

  • Mathematica
    terms = 16;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E2[x]* E4[x]^4 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A319134 Expansion of -((25*E_4^4 - 49*E_6^2*E4) + 48*E_6*E_4^2*E_2 + (-49*E_4^3 + 25*E_6^2)*E_2^2)/(3657830400*delta^2) where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively and delta is A000594.

Original entry on oeis.org

1, 86, 3750, 109672, 2419462, 43021728, 643548464, 8343640624, 95835049605, 991606081332, 9364586280842, 81571540591968, 661034448807902, 5019357866562208, 35927279225314344, 243657157464337888, 1572638456431119570, 9696997279843999470, 57313953586222481126, 325672739267123628976
Offset: 1

Views

Author

Seiichi Manyama, Sep 11 2018

Keywords

Examples

			((25*E_4^4 - 49*E_6^2*E4) + 48*E_6*E_4^2*E_2 + (-49*E_4^3 + 25*E_6^2)*E_2^2)/(delta^2) =  - 3657830400*q - 314573414400*q^2 - 13716864000000*q^3 - 401161575628800*q^4 - ... .
		

Crossrefs

Cf. A000594, A006352 (E_2), A004009 (E_4), A013973 (E_6), A082558, A281373,
About the numerator: A282012 (E_4^4), A282287 (E_6^2*E_4), A282596 (E_6*E_4^2*E_2), A008411 (E_4^3), A280869 (E_6^2), A281374 (E_2^2).

Programs

  • Mathematica
    nmax = 25; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, nmax + 1}] + O[x]^(nmax + 1); E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, nmax + 1}] + O[x]^(nmax + 1); E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, nmax + 1}] + O[x]^(nmax + 1); Rest[CoefficientList[Series[-((25*E4[x]^4 - 49*E6[x]^2*E4[x]) + 48*E6[x]*E4[x]^2*E2[x] + (-49*E4[x]^3 + 25*E6[x]^2)* E2[x]^2) / (3657830400 * x^2 * QPochhammer[x]^48), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 12 2018 *)

Formula

a(n) ~ exp(4*Pi*sqrt(2*n)) / (132300 * 2^(1/4) * Pi^2 * n^(23/4)). - Vaclav Kotesovec, Sep 12 2018

A282404 Coefficients in q-expansion of E_4*E_6^4, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, -1776, 975888, -66529344, -79516693488, 9511628122080, 2031621786790848, 134911299030780288, 4962883791154433040, 119289719378991436368, 2051366007318600561120, 26893975935849646148928, 281804567385216854182848
Offset: 0

Views

Author

Seiichi Manyama, Feb 14 2017

Keywords

Crossrefs

Cf. A013974 (E_4*E_6 = E_10), A282287 (E_4*E_6^2), A282328 (E_4*E_6^3), this sequence (E_4*E_6^4).

Programs

  • Mathematica
    terms = 13;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]*E6[x]^4 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A282474 Coefficients in q-expansion of E_4^8, where E_4 is the Eisenstein series A004009.

Original entry on oeis.org

1, 1920, 1630080, 803228160, 253366181760, 53205643249920, 7498254194403840, 699684356363412480, 42100628403784982400, 1614922125605880493440, 42332208491309728078080, 812648422343847344279040, 12060223533365891970132480
Offset: 0

Views

Author

Seiichi Manyama, Feb 16 2017

Keywords

Crossrefs

Cf. A004009 (E_4), A008410 (E_4^2), A008411 (E_4^3), A282012 (E_4^4), A282015 (E_4^5), A282330 (E_4^6), A282402 (E_4^7), this sequence (E_4^8).

Programs

  • Mathematica
    terms = 13;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^8 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A282541 Coefficients in q-expansion of E_4^5*E_6^2, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, 192, -402048, -161431296, 20329262976, 23865942948480, 5794392238723584, 671204645516954112, 41947216018774335360, 1615253348424607402944, 42337765240473386384640, 812656088633074046171904, 12060155362281020231526912
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2017

Keywords

Crossrefs

Cf. A280869 (E_6^2), A282287 (E_4*E_6^2), A282292 (E_4^2*E_6^2 = E_10^2), A282332 (E_4^3*E_6^2), A282403 (E_4^4*E_6^2), this sequence (E_4^5*E_6^2).

Programs

  • Mathematica
    terms = 13;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^5* E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A282543 Coefficients in q-expansion of E_4^2*E_6^4, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, -1536, 551808, 163854336, -93387735168, -9709554816000, 4142226444876288, 642510156233453568, 41792421673548259200, 1615606968766288470528, 42343208407470359036160, 812663841518551604717568, 12060089370317565140003328
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2017

Keywords

Crossrefs

Cf. A008410 (E_4^2 = E_8), A058550 (E_4^2*E_6 = E_14), A282292 (E_4^2*E_6^2 = E_10^2), A282357 (E_4^2*E_6^3), this sequence (E_4^2*E_6^4).

Programs

  • Mathematica
    terms = 13;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^2*E6[x]^4 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A341801 Coefficients of the series whose 12th power equals E_2*E_4*E_6, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973.

Original entry on oeis.org

1, -24, -13932, -3585216, -1580941068, -628142318640, -281617154080704, -126114490533924480, -58596395743623957084, -27537281150571923942424, -13153668428658997172513880, -6345860505664230715931502912, -3091029995619009106117946403456
Offset: 0

Views

Author

Peter Bala, Feb 20 2021

Keywords

Comments

The g.f. is the 12th root of the g.f. of A282102.
It is easy to see that E_2(x)*E_4(x)*E_6(x) == 1 - 24*Sum_{k >= 1} (k - 10*k^3 + 21*k*5)*x^k/(1 - x^k) (mod 72), and also that the integer k - 10*k^3 + 21*k*5 = k*(3*k^2 - 1)*(7^k^2 - 1) is always divisible by 3. Hence, E_2(x)*E_4(x)*E_6(x) == 1 (mod 72). It follows from Heninger et al., p. 3, Corollary 2, that the series expansion of (E_2(x)*E_4(x)* E_6(x))^(1/12) = 1 - 24*x - 13932*x^2 - 3585216*x^3 - 1580941068*x^4 - ... has integer coefficients.

Crossrefs

Programs

  • Maple
    E(2,x) := 1 -  24*add(k*x^k/(1-x^k),   k = 1..20):
    E(4,x) := 1 + 240*add(k^3*x^k/(1-x^k), k = 1..20):
    E(6,x) := 1 - 504*add(k^5*x^k/(1-x^k), k = 1..20):
    with(gfun): series((E(2,x)*E(4,x)*E(6,x))^(1/12), x, 20):
    seriestolist(%);

A377220 Expansion of (1/x) * series_reversion(x*E_4(x)), where E_4(x) denotes the Eisenstein series of weight 4 (see A004009).

Original entry on oeis.org

1, -240, 113040, -66534720, 43859560080, -30976854078240, 22919806575299520, -17536455012714130560, 13761543459443537811600, -11015192093055645841813680, 8958361831335008460574345440, -7381454927286057227098811282880, 6148958599311807793865548969813440, -5169975617288319668409172392988655520
Offset: 0

Views

Author

Peter Bala, Nov 07 2024

Keywords

Comments

The 8th root of the power series E_4(x) has integral coefficients. See A108091. The 8th root of the g.f. of the present sequence also has integral coefficients. See A377221.
More generally if f(x) = g(x)^n, where g(x) = 1 + g_1*x + g_2*x^2 + ... is a power series with integral coefficients, then both the power series (1/x) * series_reversion(x*f(x)) and (1/x) * series_reversion(x/f(x)) are also equal to the n-th powers of integral power series.

Examples

			The 8th root of the g.f. A(x)^(1/8) = (1 - 240*x + 113040*x^2 - 66534720*x^3 + 43859560080*x^4 - 30976854078240*x^5 + 22919806575299520*x^6 +...)^(1/8) = 1 - 30*x + 10980*x^2 - 5822040*x^3 + 3623245710*x^4 - 2467207358280*x^5 + 1779938570782440*x^6 + .... lies in Z[[x]]. See A377221.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    Order := 30:
    E_4 := 1 + 240*add(sigma[3](n)*x^n, n = 1..30):
    solve(series(x*E_4, x) = y, x):
    seq(coeftayl(series((%/y), y), y = 0, n), n = 0..20);

A386813 Coefficients in q-expansion of E_2^3 * E_4^2, where E_2 and E_4 are respectively the Eisenstein series A006352 and A004009.

Original entry on oeis.org

1, 408, 28872, -2685984, 24039336, 776610576, -657274464, -112765274688, -1315204139160, -9184174537416, -47705529895632, -201727238619744, -730623451715808, -2340991131399984, -6787572064867008, -18105120840067776, -44991518932447512, -105189400371536208, -233200610257765464
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 03 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    CoefficientList[Series[E2[x]^3*E4[x]^2, {x, 0, terms}], x]

A145312 Coefficients in expansion of E''_4(q), where E_4 is the Eisenstein series in A004009.

Original entry on oeis.org

4320, 40320, 210240, 604800, 1814400, 3467520, 7862400, 13080960, 24494400, 35164800, 64753920, 82293120, 135233280, 177811200, 269625600, 320785920, 500346720, 563068800, 838857600, 970905600, 1329229440, 1477681920, 2170022400, 2268144000, 3085992000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 28 2009

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 25;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms+1}];
    E4''[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
Previous Showing 41-50 of 196 results. Next