cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A173718 Numbers n such that (9^n - 2^n)/7 is prime.

Original entry on oeis.org

2, 3, 5, 13, 29, 37, 1021, 1399, 2137, 4493, 5521, 108553, 200807
Offset: 1

Views

Author

Robert Price, Dec 22 2012

Keywords

Comments

All terms are prime.
a(14) > 10^6.

Crossrefs

Programs

  • Mathematica
    Select[ Prime[ Range[1, 100000] ], PrimeQ[ (9^# - 2^#)/7 ]& ]
  • PARI
    is(n)=ispseudoprime((9^n-2^n)/7) \\ Charles R Greathouse IV, Jun 06 2017

Extensions

a(12)-a(13) from Jon Grantham, Jul 29 2023

A245442 Numbers n such that (50^n - 1)/49 is prime.

Original entry on oeis.org

3, 5, 127, 139, 347, 661, 2203, 6521, 210319
Offset: 1

Views

Author

Robert Price, Jul 22 2014

Keywords

Comments

a(9) > 10^5.
All terms are prime.

Crossrefs

Programs

Extensions

a(9)=210319 corresponds to a probable prime discovered by Paul Bourdelais, Aug 04 2020

A275938 Numbers m such that d(m) is prime while sigma(m) is not prime (where d(m) = A000005(m) and sigma(m) = A000203(m)).

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277
Offset: 1

Views

Author

Altug Alkan, Aug 12 2016

Keywords

Comments

From Robert Israel, Aug 12 2016: (Start)
d(m) is prime iff m = p^k where p is prime and k+1 is prime.
For such m, sigma(m) = 1 + p + ... + p^k = (p*m-1)/(p-1).
The sequence contains 2^(q-1) for q in A054723,
3^(q-1) for q prime but not in A028491,
5^(q-1) for q prime but not in A004061,
7^(q-1) for q prime but not in A004063, etc.
In particular, it contains all odd primes. (End)

Examples

			49 is a term because A000005(49) = 3 is prime while sigma(49) = 57 is not.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    P:= select(isprime, {2,seq(p,p=3..N,2)}):
    fp:= proc(p) local q,res;
      q:= 2;
      res:= NULL;
      while p^(q-1) <= N do
         if not isprime((p^q-1)/(p-1)) then res:= res, p^(q-1) fi;
         q:= nextprime(q);
      od;
      res;
    end proc:
    sort(convert(map(fp, P),list)); # Robert Israel, Aug 12 2016
  • PARI
    lista(nn) = for(n=1, nn, if(isprime(numdiv(n)) && !isprime(sigma(n)), print1(n, ", ")));

Formula

UNION of A000040 and A286095 (except for the term 2). - Bill McEachen, Jul 16 2024

A181987 Numbers n such that (39^n - 1)/38 is prime.

Original entry on oeis.org

349, 631, 4493, 16633, 36341
Offset: 1

Views

Author

Robert Price, Apr 04 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100000]], PrimeQ[(39^#-1)/38]&]
  • PARI
    is(n)=ispseudoprime((39^n-1)/38) \\ Charles R Greathouse IV, Jun 13 2017

A185073 Numbers n such that (34^n - 1)/33 is prime.

Original entry on oeis.org

13, 1493, 5851, 6379, 125101
Offset: 1

Views

Author

Robert Price, Mar 10 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100]], PrimeQ[(34^#-1)/33]&]
  • PARI
    isok(n) = isprime((34^n-1)/33); \\ Michel Marcus, Mar 13 2016
    
  • PARI
    lista(nn) = for(n=1, nn, if(ispseudoprime((34^n - 1)/33), print1(n, ", "))); \\ Altug Alkan, Mar 13 2016

Extensions

a(5)=125101 corresponds to a probable prime discovered by Paul Bourdelais, Nov 20 2017

A215487 Numbers k such that (7^k - 2^k)/5 is prime.

Original entry on oeis.org

3, 7, 19, 79, 431, 1373, 1801, 2897, 46997, 341063, 508867, 720497, 846913
Offset: 1

Views

Author

Robert Price, Aug 12 2012

Keywords

Comments

All terms are prime.
a(14) > 10^6.

Crossrefs

Programs

  • Mathematica
    Select[ Prime[ Range[1, 300] ], PrimeQ[ (7^# - 2^#)/5 ]& ]
  • PARI
    is(n)=ispseudoprime((7^n-2^n)/5) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(10)-a(13) from Jon Grantham, Jul 29 2023

A224691 Numbers n such that (13^n - 4^n)/9 is prime.

Original entry on oeis.org

2, 5, 19, 109, 157, 8521, 26017, 26177
Offset: 1

Views

Author

Robert Price, Apr 15 2013

Keywords

Comments

All terms are prime.
a(9) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1, 100000]], PrimeQ[(13^# - 4^#)/9]&]
  • PARI
    is(n)=ispseudoprime((13^n-4^n)/9) \\ Charles R Greathouse IV, Jun 13 2017

A247093 Triangle read by rows: T(m,n) = smallest odd prime p such that (m^p-n^p)/(m-n) is prime (0

Original entry on oeis.org

3, 3, 3, 0, 0, 3, 3, 5, 13, 3, 3, 0, 0, 0, 5, 5, 3, 3, 5, 3, 3, 3, 0, 3, 0, 19, 0, 7, 0, 3, 0, 0, 3, 0, 3, 7, 19, 0, 3, 0, 0, 0, 31, 0, 3, 17, 5, 3, 3, 5, 3, 5, 7, 5, 3, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 5, 3, 7, 5, 5, 3, 7, 3, 3, 251, 3, 17, 3, 0, 5, 0, 151, 0, 0, 0, 59, 0, 5, 0, 3, 3, 5, 0, 1097, 0, 0, 3, 3, 0, 0, 7, 0, 17, 3
Offset: 1

Views

Author

Eric Chen, Nov 18 2014

Keywords

Comments

T(m,n) is 0 if and only if m and n are not coprime or A052409(m) and A052409(n) are not coprime. (The latter has some exceptions, like T(8,1) = 3. In fact, if p is a prime and does not equal to A052410(gcd(A052409(m),A052409(n))), then (m^p-n^p)/(m-n) is composite, so if it is not 0, then it is A052410(gcd(A052409(m),A052409(n))).) - Eric Chen, Nov 26 2014
a(i) = T(m,n) corresponds only to probable primes for (m,n) = {(15,4), (18,1), (19,18), (31,6), (37,22), (37,25), ...} (i={95, 137, 171, 441, 652, 655, ...}). With the exception of these six (m,n), all corresponding primes up to a(663) are definite primes. - Eric Chen, Nov 26 2014
a(n) is currently known up to n = 663, a(664) = T(37, 34) > 10000. - Eric Chen, Jun 01 2015
For n up to 1000, a(n) is currently unknown only for n = 664, 760, and 868. - Eric Chen, Jun 01 2015

Examples

			Read by rows:
m\n        1   2   3   4   5   6   7   8   9   10  11
2          3
3          3   3
4          0   0   3
5          3   5   13  3
6          3   0   0   0   5
7          5   3   3   5   3   3
8          3   0   3   0   19  0   7
9          0   3   0   0   3   0   3   7
10         19  0   3   0   0   0   31  0   3
11         17  5   3   3   5   3   5   7   5   3
12         3   0   0   0   3   0   3   0   0   0   3
etc.
		

Crossrefs

Cf. A128164 (n,1), A125713 (n+1,n), A125954 (2n+1,2), A122478 (2n+1,2n-1).
Cf. A000043 (2,1), A028491 (3,1), A057468 (3,2), A059801 (4,3), A004061 (5,1), A082182 (5,2), A121877 (5,3), A059802 (5,4), A004062 (6,1), A062572 (6,5), A004063 (7,1), A215487 (7,2), A128024 (7,3), A213073 (7,4), A128344 (7,5), A062573 (7,6), A128025 (8,3), A128345 (8,5), A062574 (8,7), A173718 (9,2), A128346 (9,5), A059803 (9,8), A004023 (10,1), A128026 (10,3), A062576 (10,9), A005808 (11,1), A210506 (11,2), A128027 (11,3), A216181 (11,4), A128347 (11,5), A062577 (11,10), A004064 (12,1), A128348 (12,5), A062578 (12,11).

Programs

  • Mathematica
    t1[n_] := Floor[3/2 + Sqrt[2*n]]
    m[n_] := Floor[(-1 + Sqrt[8*n-7])/2]
    t2[n_] := n-m[n]*(m[n]+1)/2
    b[n_] := GCD @@ Last /@ FactorInteger[n]
    is[m_, n_] := GCD[m, n] == 1 && GCD[b[m], b[n]] == 1
    Do[k=2, If[is[t1[n], t2[n]], While[ !PrimeQ[t1[n]^Prime[k] - t2[n]^Prime[k]], k++]; Print[Prime[k]], Print[0]], {n, 1, 663}] (* Eric Chen, Jun 01 2015 *)
  • PARI
    a052409(n) = my(k=ispower(n)); if(k, k, n>1);
    a(m, n) = {if (gcd(m,n) != 1, return (0)); if (gcd(a052409(m), a052409(n)) != 1, return (0)); forprime(p=3,, if (isprime((m^p-n^p)/(m-n)), return (p)););}
    tabl(nn) = {for (m=2, nn, for(n=1, m-1, print1(a(m,n), ", ");); print(););} \\ Michel Marcus, Nov 19 2014
    
  • PARI
    t1(n)=floor(3/2+sqrt(2*n))
    t2(n)=n-binomial(floor(1/2+sqrt(2*n)), 2)
    b(n)=my(k=ispower(n)); if(k, k, n>1)
    a(n)=if(gcd(t1(n),t2(n)) !=1 || gcd(b(t1(n)), b(t2(n))) !=1, 0, forprime(p=3,2^24,if(ispseudoprime((t1(n)^p-t2(n)^p)/(t1(n)-t2(n))), return(p)))) \\ Eric Chen, Jun 01 2015

A294722 Numbers k such that (44^k - 1)/43 is prime.

Original entry on oeis.org

5, 31, 167, 100511
Offset: 1

Views

Author

Paul Bourdelais, Nov 07 2017

Keywords

Comments

The number corresponding to a(4) is a probable prime.
These are the indices of base-44 repunit primes, i.e., numbers k such that A002275(k) interpreted as a base-44 number and converted to decimal is prime. - Felix Fröhlich, Nov 08 2017

Crossrefs

Programs

  • Mathematica
    ParallelMap[ If[ PrimeQ[(44^# - 1)/43], #, Nothing] &, Prime@Range @ 10000] (* Robert G. Wilson v, Nov 25 2017 *)
  • PARI
    is(n) = ispseudoprime((44^n-1)/43) \\ Felix Fröhlich, Nov 08 2017
  • PFGW
    ABC2 (44^$a-1)/43 // -f{2*$a}
    a: primes from 2 to 1000000
    

A230139 Numbers n such that (17^n - 4^n)/13 is prime.

Original entry on oeis.org

3, 5, 7, 11, 31, 101, 887, 4861
Offset: 1

Views

Author

Robert Price, Oct 10 2013

Keywords

Comments

All terms are prime.
a(9) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1, 100000]], PrimeQ[(17^# - 4^#)/13]&]
  • PARI
    is(n)=ispseudoprime((17^n-4^n)/13) \\ Charles R Greathouse IV, Jun 13 2017
Previous Showing 11-20 of 21 results. Next