cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A185073 Numbers n such that (34^n - 1)/33 is prime.

Original entry on oeis.org

13, 1493, 5851, 6379, 125101
Offset: 1

Views

Author

Robert Price, Mar 10 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100]], PrimeQ[(34^#-1)/33]&]
  • PARI
    isok(n) = isprime((34^n-1)/33); \\ Michel Marcus, Mar 13 2016
    
  • PARI
    lista(nn) = for(n=1, nn, if(ispseudoprime((34^n - 1)/33), print1(n, ", "))); \\ Altug Alkan, Mar 13 2016

Extensions

a(5)=125101 corresponds to a probable prime discovered by Paul Bourdelais, Nov 20 2017

A247093 Triangle read by rows: T(m,n) = smallest odd prime p such that (m^p-n^p)/(m-n) is prime (0

Original entry on oeis.org

3, 3, 3, 0, 0, 3, 3, 5, 13, 3, 3, 0, 0, 0, 5, 5, 3, 3, 5, 3, 3, 3, 0, 3, 0, 19, 0, 7, 0, 3, 0, 0, 3, 0, 3, 7, 19, 0, 3, 0, 0, 0, 31, 0, 3, 17, 5, 3, 3, 5, 3, 5, 7, 5, 3, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 5, 3, 7, 5, 5, 3, 7, 3, 3, 251, 3, 17, 3, 0, 5, 0, 151, 0, 0, 0, 59, 0, 5, 0, 3, 3, 5, 0, 1097, 0, 0, 3, 3, 0, 0, 7, 0, 17, 3
Offset: 1

Views

Author

Eric Chen, Nov 18 2014

Keywords

Comments

T(m,n) is 0 if and only if m and n are not coprime or A052409(m) and A052409(n) are not coprime. (The latter has some exceptions, like T(8,1) = 3. In fact, if p is a prime and does not equal to A052410(gcd(A052409(m),A052409(n))), then (m^p-n^p)/(m-n) is composite, so if it is not 0, then it is A052410(gcd(A052409(m),A052409(n))).) - Eric Chen, Nov 26 2014
a(i) = T(m,n) corresponds only to probable primes for (m,n) = {(15,4), (18,1), (19,18), (31,6), (37,22), (37,25), ...} (i={95, 137, 171, 441, 652, 655, ...}). With the exception of these six (m,n), all corresponding primes up to a(663) are definite primes. - Eric Chen, Nov 26 2014
a(n) is currently known up to n = 663, a(664) = T(37, 34) > 10000. - Eric Chen, Jun 01 2015
For n up to 1000, a(n) is currently unknown only for n = 664, 760, and 868. - Eric Chen, Jun 01 2015

Examples

			Read by rows:
m\n        1   2   3   4   5   6   7   8   9   10  11
2          3
3          3   3
4          0   0   3
5          3   5   13  3
6          3   0   0   0   5
7          5   3   3   5   3   3
8          3   0   3   0   19  0   7
9          0   3   0   0   3   0   3   7
10         19  0   3   0   0   0   31  0   3
11         17  5   3   3   5   3   5   7   5   3
12         3   0   0   0   3   0   3   0   0   0   3
etc.
		

Crossrefs

Cf. A128164 (n,1), A125713 (n+1,n), A125954 (2n+1,2), A122478 (2n+1,2n-1).
Cf. A000043 (2,1), A028491 (3,1), A057468 (3,2), A059801 (4,3), A004061 (5,1), A082182 (5,2), A121877 (5,3), A059802 (5,4), A004062 (6,1), A062572 (6,5), A004063 (7,1), A215487 (7,2), A128024 (7,3), A213073 (7,4), A128344 (7,5), A062573 (7,6), A128025 (8,3), A128345 (8,5), A062574 (8,7), A173718 (9,2), A128346 (9,5), A059803 (9,8), A004023 (10,1), A128026 (10,3), A062576 (10,9), A005808 (11,1), A210506 (11,2), A128027 (11,3), A216181 (11,4), A128347 (11,5), A062577 (11,10), A004064 (12,1), A128348 (12,5), A062578 (12,11).

Programs

  • Mathematica
    t1[n_] := Floor[3/2 + Sqrt[2*n]]
    m[n_] := Floor[(-1 + Sqrt[8*n-7])/2]
    t2[n_] := n-m[n]*(m[n]+1)/2
    b[n_] := GCD @@ Last /@ FactorInteger[n]
    is[m_, n_] := GCD[m, n] == 1 && GCD[b[m], b[n]] == 1
    Do[k=2, If[is[t1[n], t2[n]], While[ !PrimeQ[t1[n]^Prime[k] - t2[n]^Prime[k]], k++]; Print[Prime[k]], Print[0]], {n, 1, 663}] (* Eric Chen, Jun 01 2015 *)
  • PARI
    a052409(n) = my(k=ispower(n)); if(k, k, n>1);
    a(m, n) = {if (gcd(m,n) != 1, return (0)); if (gcd(a052409(m), a052409(n)) != 1, return (0)); forprime(p=3,, if (isprime((m^p-n^p)/(m-n)), return (p)););}
    tabl(nn) = {for (m=2, nn, for(n=1, m-1, print1(a(m,n), ", ");); print(););} \\ Michel Marcus, Nov 19 2014
    
  • PARI
    t1(n)=floor(3/2+sqrt(2*n))
    t2(n)=n-binomial(floor(1/2+sqrt(2*n)), 2)
    b(n)=my(k=ispower(n)); if(k, k, n>1)
    a(n)=if(gcd(t1(n),t2(n)) !=1 || gcd(b(t1(n)), b(t2(n))) !=1, 0, forprime(p=3,2^24,if(ispseudoprime((t1(n)^p-t2(n)^p)/(t1(n)-t2(n))), return(p)))) \\ Eric Chen, Jun 01 2015

A273814 Numbers k such that (12^k - 7^k)/5 is prime.

Original entry on oeis.org

2, 3, 7, 13, 47, 89, 139, 523, 1051
Offset: 1

Views

Author

Tim Johannes Ohrtmann, May 31 2016

Keywords

Comments

All terms are prime.
The corresponding primes are 19, 277, 7001653, 21379263273733, 105329145253605843602014309589572596276217801876213, ...
a(10) > 50000. - Michael S. Branicky, Nov 12 2024

Crossrefs

Programs

  • Maple
    A273814:=n->`if`(isprime((12^n - 7^n)/5), n, NULL): seq(A273814(n), n=1..10^3); # Wesley Ivan Hurt, Jun 01 2016
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(12^# - 7^#)/5] &]
  • PARI
    for(n=1, 10000, if(isprime((12^n - 7^n)/5), print1(n, ", ")))

A294722 Numbers k such that (44^k - 1)/43 is prime.

Original entry on oeis.org

5, 31, 167, 100511
Offset: 1

Views

Author

Paul Bourdelais, Nov 07 2017

Keywords

Comments

The number corresponding to a(4) is a probable prime.
These are the indices of base-44 repunit primes, i.e., numbers k such that A002275(k) interpreted as a base-44 number and converted to decimal is prime. - Felix Fröhlich, Nov 08 2017

Crossrefs

Programs

  • Mathematica
    ParallelMap[ If[ PrimeQ[(44^# - 1)/43], #, Nothing] &, Prime@Range @ 10000] (* Robert G. Wilson v, Nov 25 2017 *)
  • PARI
    is(n) = ispseudoprime((44^n-1)/43) \\ Felix Fröhlich, Nov 08 2017
  • PFGW
    ABC2 (44^$a-1)/43 // -f{2*$a}
    a: primes from 2 to 1000000
    

A250210 Irregular triangle read by rows in which row n lists the prime factors of the duodecimal repunit ((12^n-1)/11). (Written in base 10).

Original entry on oeis.org

13, 157, 5, 13, 29, 22621, 7, 13, 19, 157, 659, 4943, 5, 13, 29, 89, 233, 37, 157, 80749, 13, 19141, 22621, 11, 23, 266981089, 5, 7, 13, 19, 29, 157, 20593, 477517, 20369233, 13, 211, 659, 4943, 13063, 61, 157, 661, 9781, 22621, 5, 13, 17, 29, 89, 97, 233, 260753
Offset: 2

Views

Author

Eric Chen, Dec 29 2014

Keywords

Examples

			Triangle begins:
[13]
[157]
[5, 13, 29]
[22621]
[7, 13, 19, 157]
[659, 4943]
[5, 13, 29, 89, 233]
[37, 157, 80749]
[13, 19141, 22621]
...
		

Crossrefs

Programs

  • PARI
    tabf(nn) = for (n=1, nn, print(factor((12^n-1)/11)[,1]~);); \\ Michel Marcus, Dec 29 2014

A366702 Numbers k such that 12^k + 1 is a semiprime.

Original entry on oeis.org

2, 4, 5, 11, 16, 32, 109, 128, 193
Offset: 1

Views

Author

Sean A. Irvine, Oct 16 2023

Keywords

Examples

			11 is in this sequence because 12^11+1 = 13*57154490053 is a semiprime.
		

Crossrefs

Previous Showing 11-16 of 16 results.