cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 190 results. Next

A182053 G.f. satisfies: A(x) = (1+x*A(x))*(1+x^2*A(x))*(1+x^3*A(x)).

Original entry on oeis.org

1, 1, 2, 5, 11, 26, 64, 159, 402, 1032, 2677, 7010, 18510, 49220, 131691, 354282, 957745, 2600382, 7088008, 19388719, 53207441, 146444424, 404151643, 1118132954, 3100540971, 8615945102, 23989662824, 66917894562, 186983937758, 523314016245, 1466807316032
Offset: 0

Views

Author

Paul D. Hanna, Apr 08 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 11*x^4 + 26*x^5 + 64*x^6 + 159*x^7 +...
Related expansions:
A(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 36*x^4 + 94*x^5 + 249*x^6 + 660*x^7 +...
A(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + 81*x^4 + 231*x^5 + 656*x^6 + 1848*x^7 +...
where A(x) = 1 + x*(1+x+x^2)*A(x) + x^3*(1+x+x^2)*A(x)^2 + x^6*A(x)^3.
The logarithm of the g.f. begins:
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 23*x^4/4 + 61*x^5/5 + 168*x^6/6 + 456*x^7/7 + 1255*x^8/8 + 3493*x^9/9 + 9753*x^10/10 +...
		

Crossrefs

Cf. A004148.

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=(1+x*A)*(1+x^2*A)*(1+x^3*A)+x*O(x^n)); polcoeff(A, n)}
    for(n=0,40,print1(a(n),", "))

Formula

Recurrence: 5*(n+2)*(n+3)*(8911*n^7 - 241946*n^6 + 2447725*n^5 - 11084372*n^4 + 19415458*n^3 + 1716316*n^2 - 23882064*n + 2130912)*a(n) = 3*(n+2)*(35644*n^8 - 914318*n^7 + 8350054*n^6 - 29810773*n^5 + 11813540*n^4 + 124863372*n^3 - 96624130*n^2 - 116648601*n + 36899532)*a(n-1) + (17822*n^9 - 448248*n^8 + 3870267*n^7 - 11783352*n^6 - 5744844*n^5 + 67908444*n^4 - 29523545*n^3 - 131900220*n^2 - 65428308*n - 24231312)*a(n-2) + (178220*n^9 - 4749810*n^8 + 45912714*n^7 - 180749091*n^6 + 117079677*n^5 + 903637509*n^4 - 1481741315*n^3 - 502308600*n^2 + 1275968592*n - 5383800)*a(n-3) - 3*(26733*n^9 - 752571*n^8 + 7896778*n^7 - 35859478*n^6 + 44913322*n^5 + 151779908*n^4 - 435106847*n^3 + 135598205*n^2 + 327138534*n - 194418504)*a(n-4) + (17822*n^9 - 528447*n^8 + 6031992*n^7 - 32027385*n^6 + 65161374*n^5 + 61817937*n^4 - 383729654*n^3 + 245358135*n^2 + 217471338*n - 55404648)*a(n-5) + 2*(17822*n^9 - 555180*n^8 + 6785304*n^7 - 40187787*n^6 + 104743872*n^5 + 17193252*n^4 - 685093274*n^3 + 1082675799*n^2 + 285222672*n - 1131441048)*a(n-6) - (17822*n^9 - 581913*n^8 + 7681743*n^7 - 51193035*n^6 + 163962759*n^5 - 87813864*n^4 - 868874108*n^3 + 1698086052*n^2 + 415801800*n - 1243151064)*a(n-7) - (35644*n^9 - 1217292*n^8 + 16363266*n^7 - 106473036*n^6 + 307618491*n^5 - 35551263*n^4 - 1688725327*n^3 + 2463079431*n^2 + 830567142*n - 2522003904)*a(n-8) + (n-8)*(35644*n^8 - 985606*n^7 + 10067008*n^6 - 43505557*n^5 + 43567930*n^4 + 201854264*n^3 - 417755448*n^2 - 116443773*n + 335593314)*a(n-9) - (n-9)*(n-8)*(8911*n^7 - 179569*n^6 + 1183180*n^5 - 2163052*n^4 - 4971815*n^3 + 14491649*n^2 + 4308780*n - 9489060)*a(n-10). - Vaclav Kotesovec, Mar 25 2014
a(n) ~ sqrt((s*(2-r-r^3*(s-1)+r^5*s))/(1+r+r^2+3*r^3*s))/ (2*sqrt(Pi)* n^(3/2)*r^(n+3/2)), where r = 0.34048516736982998257..., s = 3.7980384578075501949... are roots of the system of equations r + r^2 + r^3 + 2*r^3*s + 2*r^4*s + 2*r^5*s + 3*r^6*s^2 = 1, and (1 + r*s)*(1 + r^2*s)*(1 + r^3*s) = s. - Vaclav Kotesovec, Mar 25 2014

A202838 Triangle read by rows: T(n,k) is the number of secondary structures of size n (n>=0) having k stacks of length 1 (k>=0).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 2, 6, 4, 10, 3, 8, 15, 14, 14, 27, 40, 1, 23, 56, 90, 16, 38, 122, 178, 85, 65, 253, 356, 295, 9, 117, 494, 762, 805, 105, 214, 938, 1713, 1912, 594, 2, 391, 1783, 3828, 4326, 2331, 76, 708, 3456, 8265, 9882, 7290, 771, 1278, 6793, 17309, 23109, 19784, 4529, 30
Offset: 0

Views

Author

Emeric Deutsch, Dec 25 2011

Keywords

Comments

For "secondary structure" and "stack" see the Hofacker et al. reference, p. 209.
Sum of entries in row n is A004148 (the secondary structure numbers).
Sum(k*T(n,k), k>=0)=A202839(n).
T(n,0)=A202840(n).

Examples

			Row 5 is 2,6: representing unpaired vertices by v and arcs by AA, BB, etc., the 8 (= A004148(5)) secondary structures of size 5 are vvvvv, AvAvv, vvAvA, AvvAv, vAvvA, AvvvA, vAvAv, ABvBA; they have 0,1,1,1,1,1,1,0 stacks of length 1, respectively.
Triangle starts:
1;
1;
1;
1,1;
1,3;
2,6;
4,10,3;
8,15,14;
		

Crossrefs

Programs

  • Maple
    f := (t-1)*z^2+z^2/(1-z^2): eq := G = 1+z*G+f*G*(G-1)/(1+f): G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 20)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. degree(P[n])) end do; # yields sequence in triangular form

Formula

G.f. G(t,z) satisfies G = 1 + zG + [f/(1 + f)]G(G-1), where f = (t-1)z^2 + z^2/(1-z^2).
The multivariate g.f. H(z, t[1], t[2], ...) of secondary structures with respect to size (marked by z) and number of stacks of length j (marked by t[j]) satisfies H = 1 + zH + (f/(1 + f))H(H-1), where f = t[1]z^2 + t[2]z^4 + t[3]z^6 + ... .

A202839 Number of stacks of length 1 in all 2ndary structures of size n.

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 16, 43, 110, 284, 733, 1886, 4853, 12486, 32121, 82647, 212699, 547552, 1410023, 3632260, 9360140, 24129284, 62224692, 160522287, 414246823, 1069376386, 2761502201, 7133442743, 18432633823, 47643696626, 123182434292, 318575889057, 824125660356
Offset: 0

Views

Author

Emeric Deutsch, Dec 25 2011

Keywords

Comments

For "secondary structure" and "stack" see the Hofacker et al. reference, p. 209.
Number of stacks of length 2 in all 2ndary structures of size n+2.
Number of stacks of length 3 in all 2ndary structures of size n+4.

Examples

			a(5)=6: representing unpaired vertices by v and arcs by AA, BB, etc., the 8 (= A004148(5)) secondary structures of size 5 are vvvvv, AvAvv, vvAvA, AvvAv, vAvvA, AvvvA, vAvAv, ABvBA; they have 0,1,1,1,1,1,1,0 stacks of length 1, respectively.
		

Crossrefs

Programs

  • Maple
    g := z^2*(1-z^2)^2*S*(S-1)/(1-z+z^2-2*z^2*S): S := ((1-z+z^2-sqrt(1-2*z-z^2-2*z^3+z^4))*1/2)/z^2: gser := series(g, z = 0, 35): seq(coeff(gser, z, n), n = 0 .. 32);
  • Mathematica
    CoefficientList[Series[-(1 - x^2)^2 * ((1 - x) + (-1 + 2*x + x^3) / Sqrt[(1 - 3*x + x^2) * (1 + x + x^2)]) / (2*x^2), {x, 0, 40}], x] (* Vaclav Kotesovec, May 29 2022 *)

Formula

a(n) = Sum(k*A202838(n,k), k>=0).
a(n) = Sum(k*A202841(n+2,k), k>=0).
a(n) = Sum(k*A202843(n+4,k), k>=0).
G.f.: g(z) = z^2*(1-z^2)^2*S(S - 1)/(1 - z + z^2 -2*z^2*S), where S is defined by S = 1 + z*S + z^2*S(S-1) (the g.f. of the secondary structure numbers A004148).
a(n) ~ 5^(3/4) * phi^(2*n-3) / (2*sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, May 29 2022
D-finite with recurrence -(n+2)*(406*n-3981)*a(n) +(2022*n^2-15917*n-13552)*a(n-1) +4*(-402*n^2+2594*n+593)*a(n-2) +4*(-605*n^2+7719*n-23415)*a(n-3) +4*(-203*n^2-527*n+15295)*a(n-4) +2*(804*n^2-8404*n+14555)*a(n-5) +(2826*n^2-42913*n+153174)*a(n-6) -(1210*n-6753)*(n-10)*a(n-7)=0. - R. J. Mathar, Jul 26 2022

A202840 Number of secondary structures of size n having no stacks of length 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 8, 14, 23, 38, 65, 117, 214, 391, 708, 1278, 2318, 4238, 7803, 14419, 26684, 49433, 91736, 170656, 318280, 594905, 1113868, 2088554, 3921505, 7373367, 13883045, 26174600, 49408932, 93372078, 176637791, 334491586, 634023965, 1202894908, 2284187117
Offset: 0

Views

Author

Emeric Deutsch, Dec 25 2011

Keywords

Comments

For "secondary structure" and "stack" see the Hofacker et al. reference, p. 209.
a(n) = A202838(n,0).

Examples

			a(5)=2; representing unpaired vertices by v and arcs by AA, BB, etc., the 8 (= A004148(5)) secondary structures of size 5 are vvvvv, AvAvv, vvAvA, AvvAv, vAvvA, AvvvA, vAvAv, ABvBA; they have 0,1,1,1,1,1,1,0 stacks of length 1, respectively.
		

Crossrefs

Programs

  • Maple
    f := z^4/(1-z^2): eq := G = 1+z*G+f*G*(G-1)/(1+f): G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 42)): seq(coeff(Gser, z, n), n = 0 .. 39);

Formula

G.f. G=G(z) satisfies G = 1+zG +fG(G-1)/(1+f), where f = z^4/(1-z^2).
D-finite with recurrence +(n+4)*a(n) +(-2*n-5)*a(n-1) +(-n-1)*a(n-2) +2*(2*n-1)*a(n-3) +(-n+2)*a(n-4) +4*(-2*n+7)*a(n-5) +3*(n-5)*a(n-6) +3*(2*n-13)*a(n-7) +2*(-n+8)*a(n-8) +2*(-2*n+19)*a(n-9) +(n-11)*a(n-10)=0. - R. J. Mathar, Jul 26 2022

A202841 Triangle read by rows: T(n,k) is the number of secondary structures of size n having k stacks of length 2 (n>=0, k>=0).

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 1, 14, 3, 31, 6, 66, 16, 142, 43, 316, 104, 3, 708, 256, 14, 1593, 647, 43, 3625, 1610, 138, 8314, 3990, 430, 1, 19165, 9944, 1247, 16, 44433, 24762, 3552, 85, 103557, 61574, 10040, 331, 242376, 153270, 27877, 1225, 569514, 381718, 76491, 4272, 9
Offset: 0

Views

Author

Emeric Deutsch, Dec 25 2011

Keywords

Comments

For "secondary structure" and "stack" see the Hofacker et al. reference, p. 209.
Sum of entries in row n is A004148 (the secondary structure numbers).

Examples

			Row 5 is 7,1: representing unpaired vertices by v and arcs by AA, BB, etc., the 8 (= A004148(5)) secondary structures of size 5 are vvvvv, AvAvv, vvAvA, AvvAv, vAvvA, AvvvA, vAvAv, ABvBA; only the last one has a stack of length 2.
Triangle starts:
1;
1;
1;
2;
4;
7,1;
14,3;
31,6;
		

Crossrefs

Programs

  • Maple
    f := (t-1)*z^4+z^2/(1-z^2): eq := G = 1+z*G+f*G*(G-1)/(1+f): G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 23)): for n from 0 to 19 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 19 do seq(coeff(P[n], t, k), k = 0 .. degree(P[n])) end do; # yields sequence in triangular form

Formula

Sum(k*T(n,k), k>=0) = A202839(n-2).
T(n,0) = A202842(n).
G.f. G(t,z) satisfies G = 1 + zG + [f/(1 + f)]G(G-1), where f = (t-1)z^4 + z^2/(1-z^2).
The multivariate g.f. H(z, t[1], t[2], ...) of secondary structures with respect to size (marked by z) and number of stacks of length j (marked by t[j]) satisfies H = 1 + zH + [f/(1 + f)]H(H-1), where f = t[1]z^2 + t[2]z^4 + t[3]z^6 + ... .

A202842 Number of secondary structures of size n having no stacks of length 2.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 14, 31, 66, 142, 316, 708, 1593, 3625, 8314, 19165, 44433, 103557, 242376, 569514, 1343099, 3177766, 7540845, 17943506, 42804078, 102345017, 245233366, 588785677, 1416247791, 3412495415, 8235829927, 19906780104, 48185131721, 116790380824, 283432579807
Offset: 0

Views

Author

Emeric Deutsch, Dec 25 2011

Keywords

Comments

For "secondary structure" and "stack" see the Hofacker et al. reference, p. 209.
a(n) = A202841(n,0).

Examples

			a(5)=7; representing unpaired vertices by v and arcs by AA, BB, etc., the 8 (= A004148(5)) secondary structures of size 5 are vvvvv, AvAvv, vvAvA, AvvAv, vAvvA, AvvvA, vAvAv, ABvBA; only the last one has a stack of length 2.
		

Crossrefs

Programs

  • Maple
    f := z^2*(1-z^2+z^4)/(1-z^2): eq := G = 1+z*G+f*G*(G-1)/(1+f): G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 38)): seq(coeff(Gser, z, n), n = 0 .. 34);

Formula

G.f.: G=G(z) satisfies G = 1+zG +fG(G-1)/(1+f), where f = z^2*(1-z^2+z^4)/(1-z^2).

A202843 Triangle read by rows: T(n,k) is the number of secondary structures of size n having k stacks of length 3.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 17, 36, 1, 79, 3, 179, 6, 407, 16, 935, 43, 2173, 110, 5089, 284, 12005, 727, 3, 28500, 1858, 14, 68022, 4767, 43, 163154, 12210, 138, 393060, 31255, 433, 950652, 80057, 1295, 2307454, 205088, 3804, 1, 5618906, 525534, 10985, 16, 13723145, 1347174, 31297, 85
Offset: 0

Views

Author

Emeric Deutsch, Dec 25 2011

Keywords

Comments

For "secondary structure" and "stack" see the Hofacker et al. reference, p. 209.
Sum of entries in row n is A004148 (the secondary structure numbers).
Sum(k*T(n,k), k>=0) = A202839(n-4).
T(n,0) = A202844(n).

Examples

			Row 5 is 8: representing unpaired vertices by v and arcs by AA, BB, etc., the 8 (= A004148(5)) secondary structures of size 5 are vvvvv, AvAvv, vvAvA, AvvAv, vAvvA, AvvvA, vAvAv, ABvBA; none of them has stacks of length 3.
Triangle starts:
1;
1;
1;
2;
4;
8;
17;
36,1;
79,3;
		

Crossrefs

Programs

  • Maple
    f := (t-1)*z^6+z^2/(1-z^2): eq := G = 1+z*G+f*G*(G-1)/(1+f): G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 26)): for n from 0 to 22 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 22 do seq(coeff(P[n], t, k), k = 0 .. degree(P[n])) end do; # yields sequence in triangular form

Formula

G.f.: G(t,z) satisfies G = 1 + zG + [f/(1 + f)]G(G-1), where f = (t-1)z^6 + z^2/(1-z^2).
The multivariate g.f. H(z, t[1], t[2], ...) of secondary structures with respect to size (marked by z) and number of stacks of length j (marked by t[j]) satisfies H = 1 + zH + [f/(1 + f)]H(H-1), where f = t[1]z^2 + t[2]z^4 + t[3]z^6 + ... .

A202844 Number of secondary structures of size n having no stacks of length 3.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 17, 36, 79, 179, 407, 935, 2173, 5089, 12005, 28500, 68022, 163154, 393060, 950652, 2307454, 5618906, 13723145, 33607242, 82507764, 203028034, 500659653, 1237053269, 3062204227, 7593229687, 18858944533, 46909741893, 116848688876, 291449697298
Offset: 0

Views

Author

Emeric Deutsch, Dec 25 2011

Keywords

Comments

For "secondary structure" and "stack" see the Hofacker et al. reference, p. 209.

Examples

			a(5)=8; representing unpaired vertices by v and arcs by AA, BB, etc., the 8 (= A004148(5)) secondary structures of size 5 are vvvvv, AvAvv, vvAvA, AvvAv, vAvvA, AvvvA, vAvAv, ABvBA; none of them has stacks of length 3.
		

Crossrefs

Programs

  • Maple
    f := z^2*(1-z^4+z^6)/(1-z^2): eq := G = 1+z*G+f*G*(G-1)/(1+f): G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 37)): seq(coeff(Gser, z, n), n = 0 .. 33);

Formula

G.f.: G=G(z) satisfies G = 1+zG +fG(G-1)/(1+f), where f = z^2*(1-z^4+z^6)/(1-z^2).
a(n) = A202843(n,0).

A246177 Triangle read by rows: T(n,k) is the number of weighted lattice paths in B(n) such that the area between the x-axis and the path is k.

Original entry on oeis.org

1, 1, 2, 3, 1, 5, 2, 1, 8, 5, 3, 1, 13, 10, 8, 4, 2, 21, 20, 18, 12, 7, 3, 1, 34, 38, 39, 30, 22, 12, 7, 2, 1, 55, 71, 80, 70, 57, 39, 26, 14, 7, 3, 1, 89, 130, 160, 154, 138, 106, 81, 52, 34, 18, 10, 4, 2, 144, 235, 312, 327, 315, 267, 220, 163, 118, 78, 49, 28, 16, 7, 3, 1
Offset: 0

Views

Author

Emeric Deutsch, Aug 20 2014

Keywords

Comments

The members of B(n) are paths of weight n that start at (0,0), end on but never go below the horizontal axis, and whose steps are of the following four kinds: an (1,0)-step with weight 1, an (1,0)-step with weight 2, a (1,1)-step with weight 2, and a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps.
Apparently, number of terms in row n is 1+floor(n^2/8).
Sum of entries in row n is A004148(n+1) (the 2ndary structure numbers).
T(n,0) = A000045(n+1) (the Fibonacci numbers).
T(n,1) = A001629(n-1) (n>=1).

Examples

			Row 3 is 3,1; indeed, B(3) consists of the paths hhh, hH, Hh, UD with areas 0,0,0,1, respectively.
Triangle starts:
   1;
   1;
   2;
   3,   1;
   5,   2,   1;
   8,   5,   3,   1;
  13,  10,   8,   4,   2;
  21,  20,  18,  12,   7,   3,  1;
  34,  38,  39,  30,  22,  12,  7,  2,  1;
  55,  71,  80,  70,  57,  39, 26, 14,  7,  3,  1;
  89, 130, 160, 154, 138, 106, 81, 52, 34, 18, 10, 4, 2;
		

Crossrefs

Programs

  • Maple
    g := 1/(1-z-z^2-t*z^3*A[1]): for j to 15 do A[j] := 1/(1-t^j*z-t^j*z^2-t^(2*j+1)*z^3*A[j+1]) end do: gser := simplify(series(g, z = 0, 20)): for n from 0 to 17 do P[n] := sort(coeff(gser, z, n)) end do: for n from 0 to 17 do seq(coeff(P[n], t, j), j = 0 .. floor((1/8)*n^2)) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, y) option remember; `if`(y<0 or y>n, 0, `if`(n=0, 1,
          expand(b(n-1, y)*x^y +`if`(n>1, b(n-2, y)*x^y+b(n-2, y+1)*
          x^(y+1/2), 0) +b(n-1, y-1)*x^(y-1/2))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..20);  # Alois P. Heinz, Aug 20 2014
  • Mathematica
    b[n_, y_] := b[n, y] = If[y<0 || y>n, 0, If[n == 0, 1, Expand[b[n-1, y]*x^y + If[n>1, b[n-2, y]*x^y + b[n-2, y+1]*x^(y+1/2), 0] + b[n-1, y-1]*x^(y-1/2)]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)

Formula

The trivariate g.f. G=G(t,s,z), where t marks area, s marks length (=number of steps), and z marks weight, satisfies G = 1+szG+sz^2G+ts^2z^3G(t,ts,z)G. This follows at once from the fact that every nonempty path is of the form hC or HC or UCDC, where h denotes a (1,0)-step of weight 1, H denotes a (1,0)-step of weight 2, U denotes a (1,1)-step, D denotes a (1,-1)-step, and the C's denote paths, not necessarily the same. From the equation one can find G(t,s,z) as a continued fraction (the Maple program makes use of this).

A023421 Generalized Catalan Numbers x^2*A(x)^2 -(1-x+x^2+x^3+x^4)*A(x) + 1 =0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 65, 133, 274, 568, 1184, 2481, 5223, 11042, 23434, 49908, 106633, 228505, 490999, 1057683, 2283701, 4941502, 10713941, 23272929, 50642017, 110377543, 240944076, 526717211, 1152996206, 2527166334, 5545804784, 12184053993
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A023421 := proc(n)
        option remember;
        if n = 0 then
            1;
        else
            procname(n-1)+add(procname(k)*procname(n-2-k), k=3..n-2) ;
        end if;
    end proc: # R. J. Mathar, May 01 2015
  • Mathematica
    a[0]=1; a[n_]:= a[n]=a[n-1] + Sum[a[k]*a[n-2-k], {k,3,n-2}]; Table[a[n], {n,0,30}] (* modified by G. C. Greubel, Jan 01 2018 *)
  • PARI
    {a(n) = if(n==0,1, a(n-1) + sum(k=3,n-2, a(k)*a(n-k-2)))};
    for(n=0,30, print1(a(n), ", ")) \\ G. C. Greubel, Jan 01 2018

Formula

G.f. A(x) satisfies: A(x) = (1 + x^2 * A(x)^2) / (1 - x + x^2 + x^3 + x^4). - Ilya Gutkovskiy, Jul 20 2021
D-finite with recurrence (n+2)*a(n) +(-2*n-1)*a(n-1) +(-n+1)*a(n-2) +(n-4)*a(n-4) +3*(n-7)*a(n-6) +(2*n-17)*a(n-7) +(n-10)*a(n-8)=0. - R. J. Mathar, Feb 03 2025
Previous Showing 31-40 of 190 results. Next