cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A321539 3^n with digits rearranged into nonincreasing order.

Original entry on oeis.org

1, 3, 9, 72, 81, 432, 972, 8721, 6651, 98631, 99540, 777411, 544311, 9543321, 9987642, 98744310, 76443210, 964321110, 988744320, 7666422111, 8876444310, 65433321000, 99865331100, 98877443211, 988654432221, 988876444320, 9888655432221
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2018

Keywords

Crossrefs

The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).
Cf. A004186.

Programs

  • Mathematica
    A321539[n_]:=FromDigits[ReverseSort[IntegerDigits[3^n]]];Array[A321539,40,0] (* Paolo Xausa, Aug 10 2023 *)
  • Python
    def A321539(n): return int(''.join(sorted(str(3**n),reverse=True))) # Chai Wah Wu, Nov 10 2022

Formula

a(n) = A004186(A000244(n)). - Michel Marcus, Nov 10 2022

A321540 3^n with digits rearranged into nondecreasing order.

Original entry on oeis.org

1, 3, 9, 27, 18, 234, 279, 1278, 1566, 13689, 4599, 114777, 113445, 1233459, 2467899, 1344789, 1234467, 11123469, 23447889, 1112246667, 134446788, 12333456, 113356899, 11234477889, 122234456889, 23444678889, 1222345568889, 2445567778899
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2018

Keywords

Crossrefs

The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).
Cf. A004185.

Programs

  • Magma
    [Seqint(Reverse(Sort(Intseq(3^n)))):n in [0..35]]; // Vincenzo Librandi, Jan 22 2020
    
  • Mathematica
    Table[FromDigits[Sort[IntegerDigits[3^n]]], {n, 0, 40}] (* Vincenzo Librandi, Jan 22 2020 *)
  • Python
    def A321540(n): return int(''.join(sorted(str(3**n)))) # Chai Wah Wu, Nov 10 2022

Formula

a(n) = A004185(A000244(n)). - Michel Marcus, Nov 10 2022

A321541 a(0)=1; thereafter a(n) = 3*a(n-1) with digits rearranged into nonincreasing order.

Original entry on oeis.org

1, 3, 9, 72, 621, 8631, 98532, 996552, 9986652, 99996552, 999986652, 9999996552, 99999986652, 999999996552, 9999999986652, 99999999996552, 999999999986652, 9999999999996552, 99999999999986652, 999999999999996552, 9999999999999986652, 99999999999999996552, 999999999999999986652
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2018

Keywords

Comments

In contrast to A321542, this sequence increases forever.
Proof: The terms from a(7) onwards can be described as follows:
3 times the number 9 (2k times) 6552 is 2 9 (2k-1 times) 89656 which becomes 9 (2k times) 86652 when sorted;
then 3 times the number 9 (2k times) 86652 is 2 9 (2k times) 59956 which becomes 9 (2k+2 times) 6552 when sorted. QED

Crossrefs

The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).

Programs

  • Mathematica
    NestList[FromDigits[ReverseSort[IntegerDigits[3*#]]] &, 1, 25] (* Paolo Xausa, Aug 02 2024 *)

Formula

From Chai Wah Wu, Nov 20 2018: (Start)
a(n) = 10*a(n-1) + a(n-2) - 10*a(n-3) for n > 9.
G.f.: (118800*x^9 + 8910*x^8 + 8811*x^7 + 12321*x^6 + 2439*x^5 - 78*x^4 - 11*x^3 - 22*x^2 - 7*x + 1)/((x - 1)*(x + 1)*(10*x - 1)). (End)

A071586 Powers of 8 written backwards.

Original entry on oeis.org

1, 8, 46, 215, 6904, 86723, 441262, 2517902, 61277761, 827712431, 4281473701, 2954399858, 63767491786, 888318557945, 4011156408934, 23888027348153, 656017679474182, 8425863189971522, 48918490589341081, 278558570881511441
Offset: 0

Views

Author

Benoit Cloitre, Jun 01 2002

Keywords

Crossrefs

Programs

  • PARI
    for(i=1,50,n=8^i; s=ceil(log(n)/log(10)); print1(sum(i=0,s,10^(s-i-1)*(floor(n/10^i)-10*floor(n/10^(i+1)))),","))

A071588 Powers of 6 written backwards.

Original entry on oeis.org

1, 6, 63, 612, 6921, 6777, 65664, 639972, 6169761, 69677001, 67166406, 650797263, 6332876712, 61049606031, 69046146387, 675489481074, 6547099011282, 63744495662961, 614866659955101, 694010047953906, 6792600448516563
Offset: 0

Views

Author

Benoit Cloitre, Jun 01 2002

Keywords

Crossrefs

Programs

  • Mathematica
    FromDigits[Reverse[IntegerDigits[#]]]&/@(6^Range[0,30]) (* Harvey P. Dale, Feb 02 2012 *)
  • PARI
    for(i=1,50,n=5^i; s=ceil(log(n)/log(10)); print1(sum(i=0,s,10^(s-i-1)*(floor(n/10^i)-10*floor(n/10^(i+1)))),","))

Formula

a(n) = A004086(A000400(n)).

A062018 a(n) = n^n written backwards.

Original entry on oeis.org

1, 4, 72, 652, 5213, 65664, 345328, 61277761, 984024783, 1, 116076113582, 6528440016198, 352295601578203, 61085552860021111, 573958083098398734, 61615590737044764481, 771467633688162042728, 42457573569257080464393
Offset: 1

Views

Author

Amarnath Murthy, Jun 01 2001

Keywords

Examples

			a(5) = 5213, as 5^5 = 3125.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 50 do a := convert(n^n,base,10):b := add(10^(nops(a)- i)*a[i],i=1..nops(a)):printf(`%d,`,b); od:
  • Mathematica
    Table[IntegerReverse[n^n],{n,20}] (* Harvey P. Dale, Jul 31 2022 *)
  • PARI
    a(n) = { fromdigits(Vecrev(digits( n^n )))} \\ Harry J. Smith, Jul 29 2009

Formula

a(n) = A004086(n^n).

Extensions

More terms from Jason Earls and Vladeta Jovovic, Jun 01 2001

A103162 GCD of reverse(3^n) and reverse(3^(n+1)).

Original entry on oeis.org

3, 9, 18, 18, 9, 9, 36, 9, 27, 27, 9, 9, 9, 9, 9, 27, 9, 63, 9, 9, 9, 9, 27, 18, 36, 9, 9, 18, 18, 18, 9, 9, 9, 9, 4941, 9, 9, 9, 9, 9, 9, 9, 9, 9, 144, 18, 9, 153, 333, 63, 18, 9, 27, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 18, 18, 9, 9, 18, 18, 18, 9, 9, 9, 9, 9, 9, 9, 9, 9, 81, 9, 9, 9, 9, 54
Offset: 1

Views

Author

Labos Elemer, Jan 25 2005

Keywords

Examples

			These common divisors are always divisible by 3.
		

Crossrefs

Cf. A004167.

Programs

  • Mathematica
    rd[x_] :=FromDigits[Reverse[IntegerDigits[x]]] Table[GCD[rd[3^w], rd[3^(w+1)]], {w, 1, 100}]

Formula

a(n) = GCD(A004167(n), A004167(n+1)).
Previous Showing 11-17 of 17 results.