cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A353128 Antidiagonal sums of A353109.

Original entry on oeis.org

0, 0, 1, 4, 10, 20, 35, 20, 39, 48, 57, 40, 61, 58, 68, 92, 59, 96, 105, 114, 79, 118, 106, 116, 149, 98, 153, 162, 171, 118, 175, 154, 164, 206, 137, 210, 219, 228, 157, 232, 202, 212, 263, 176, 267, 276, 285, 196, 289, 250, 260, 320, 215, 324, 333, 342, 235, 346
Offset: 0

Views

Author

Stefano Spezia, Apr 24 2022

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,-1},{0,0,1,4,10,20,35,20,39,48,57,40,61,58,68,92,59,96,105},58]

Formula

G.f.: x^2*(1 + 4*x + 10*x^2 + 20*x^3 + 35*x^4 + 20*x^5 + 39*x^6 + 48*x^7 + 55*x^9 + 32*x^10 + 41*x^11 + 18*x^12 - 2*x^13 - 19*x^15 + 105*x^17 + x^18 + 3*x^19 + 6*x^20 + 10*x^21 + 15*x^22 + 89*x^23 + 19*x^24 + 9*x^25 - 48*x^26)/((1 - x)^2*(1 + x + x^2)^2*(1 + x^3 + x^6)^2).
a(n) = 2*a(n-9) - a(n-18) for n > 18.

A317095 a(n) = 40*n.

Original entry on oeis.org

0, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680, 720, 760, 800, 840, 880, 920, 960, 1000, 1040, 1080, 1120, 1160, 1200, 1240, 1280, 1320, 1360, 1400, 1440, 1480, 1520, 1560, 1600, 1640, 1680, 1720, 1760, 1800, 1840, 1880
Offset: 0

Views

Author

Felix Fröhlich, Sep 07 2018

Keywords

Comments

a(n) is equal to the freshwater zone below sea level for a water table of elevation n above sea level in a simplified freshwater-saltwater interface in a coastal water-table aquifer (cf. Barlow, 2003, p. 14, eq. (2) and p. 15, Fig. B-1 and B-2).
From Bruno Berselli, Sep 10 2018: (Start)
After 0, subsequence of A065607: 1/a(n)^2 + 1/(30*n)^2 = 1/(24*n)^2, with n > 0 and a(n) > 30*n.
Also, all positive terms belong to A049094: 2^(40*n)-1 = 1024^(4*n)-1 and (25*41-1)^(4*n)-1 is divisible by 25. (End)

Crossrefs

Row n = 40 of A004247. Intersection of A008587 and A008590.
After 0, subsequence of A005101.

Programs

  • Mathematica
    Table[40 n, {n, 0, 50}] (* or *)
    LinearRecurrence[{2, -1}, {0, 40}, 50] (* or *)
    CoefficientList[Series[40*x/(1 - x)^2, {x, 0, 50}], x] (* Stefano Spezia, Sep 07 2018 *)
  • PARI
    a(n) = 40*n
    
  • PARI
    a(n) = if(n==0, 0, if(n==1, 40, 2*a(n-1)-a(n-2)))
    
  • PARI
    concat(0, Vec(40*x/(1-x)^2 + O(x^60)))

Formula

O.g.f.: 40*x/(1 - x)^2.
E.g.f.: 40*x*exp(x). - Bruno Berselli, Sep 10 2018
a(n) = 2*a(n - 1) - a(n - 2) for n > 1. - Stefano Spezia, Sep 07 2018
a(n) = A008586(A008592(n)) = 4*A008592(n).
a(n) = A010692(n)*A008586(n) = 10*A008586(n).
a(n) = A008602(A005843(n)) = 20*A005843(n).
a(n) = A007395(n)*A008602(n) = 2*A008602(n).

A069971 Table by antidiagonals of variance of time for a random walk starting at 0 to reach one of the boundaries at +n or -k for the first time.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 8, 8, 8, 0, 0, 20, 22, 22, 20, 0, 0, 40, 48, 48, 48, 40, 0, 0, 70, 90, 92, 92, 90, 70, 0, 0, 112, 152, 160, 160, 160, 152, 112, 0, 0, 168, 238, 258, 260, 260, 258, 238, 168, 0, 0, 240, 352, 392, 400, 400, 400, 392, 352, 240, 0, 0, 330, 498
Offset: 0

Views

Author

Henry Bottomley, Apr 29 2002

Keywords

Comments

Expected time to reach one of the boundaries at +n or -k for the first time is n*k, i.e. A004247.

Examples

			Rows start 0,0,0,0,0,0,0,...; 0,0,2,8,20,40,70...; 0,2,8,22,48,90,152...; 0,8,22,48,92,160,258...; etc.
		

Formula

T(n, k) =nk(n^2+k^2-2)/3 =T(n+1, k-1)/2+T(n-1, k+1)/2+(n-k)^2 with T(n, 0)=T(0, k)=0. T(n, n)=n^2*(n^2-1)*2/3=8*A002415(n).

A141429 Triangle T(n, k) = (k+1)*(n-k+1), read by rows.

Original entry on oeis.org

2, 4, 3, 6, 6, 4, 8, 9, 8, 5, 10, 12, 12, 10, 6, 12, 15, 16, 15, 12, 7, 14, 18, 20, 20, 18, 14, 8, 16, 21, 24, 25, 24, 21, 16, 9, 18, 24, 28, 30, 30, 28, 24, 18, 10, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12, 24, 33, 40, 45, 48, 49, 48, 45, 40, 33, 24, 13
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 06 2008

Keywords

Examples

			Triangle begins as:
   2;
   4,  3;
   6,  6,  4;
   8,  9,  8,  5;
  10, 12, 12, 10,  6;
  12, 15, 16, 15, 12,  7;
  14, 18, 20, 20, 18, 14,  8;
  16, 21, 24, 25, 24, 21, 16,  9;
  18, 24, 28, 30, 30, 28, 24, 18, 10;
  20, 27, 32, 35, 36, 35, 32, 27, 20, 11;
		

Crossrefs

Programs

  • Magma
    [(k+1)*(n-k+1): k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 30 2021
    
  • Maple
    A141429 := proc(n,k)
            (k+1)*(n-k+1) ;
    end proc:
    seq(seq(A141429(n,m),m=1..n),n=1..14) ; # R. J. Mathar, Nov 10 2011
  • Mathematica
    Table[(k+1)*(n-k+1), {n,15}, {k,n}]//Flatten
  • Sage
    flatten([[(k+1)*(n-k+1) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 30 2021

Formula

T(n, k) = (k+1)*(n-k+1).
T(n, k) = A158823(n+2, k+2).
Sum_{k=1..n} T(n, k) = A005581(n+1).

Extensions

Edited by G. C. Greubel, Mar 30 2021

A141432 Triangle T(n,k) = (k+1)*(n-k-1) read by rows.

Original entry on oeis.org

-2, 0, -3, 2, 0, -4, 4, 3, 0, -5, 6, 6, 4, 0, -6, 8, 9, 8, 5, 0, -7, 10, 12, 12, 10, 6, 0, -8, 12, 15, 16, 15, 12, 7, 0, -9, 14, 18, 20, 20, 18, 14, 8, 0, -10, 16, 21, 24, 25, 24, 21, 16, 9, 0, -11
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 06 2008

Keywords

Examples

			Triangle begins as:
  -2;
   0, -3;
   2,  0, -4;
   4,  3,  0, -5;
   6,  6,  4,  0, -6;
   8,  9,  8,  5,  0, -7;
  10, 12, 12, 10,  6,  0, -8;
  12, 15, 16, 15, 12,  7,  0, -9;
  14, 18, 20, 20, 18, 14,  8,  0, -10;
  16, 21, 24, 25, 24, 21, 16,  9,   0, -11;
		

Crossrefs

Programs

  • Magma
    [(k+1)*(n-k-1): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 01 2021
    
  • Maple
    A141432:= (n,k) -> (k+1)*(n-k-1); seq(seq(A141432(n,k), k=1..n), n=1..12); # G. C. Greubel, Apr 01 2021
  • Mathematica
    Table[(k+1)*(n-k-1), {n, 12}, {k, n}]//Flatten (* modified by G. C. Greubel, Apr 01 2021 *)
  • Sage
    flatten([[(k+1)*(n-k-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 01 2021

Formula

T(n,k) = (k+1)*(n-k-1).
Sum_{k=1..n} T(n, k) = n*(n^2 - 13)/6.
G.f.: Sum_{n>=0} Sum_{k>=0} T(n,k)*x^n*y^k = (2*x-1-y)/((1-y)^3*(x-1)^2). - R. J. Mathar, Feb 19 2020

A349039 Square array T(n, k) read by antidiagonals, n, k >= 0; T(n, k) = n^2 - n*k + k^2.

Original entry on oeis.org

0, 1, 1, 4, 1, 4, 9, 3, 3, 9, 16, 7, 4, 7, 16, 25, 13, 7, 7, 13, 25, 36, 21, 12, 9, 12, 21, 36, 49, 31, 19, 13, 13, 19, 31, 49, 64, 43, 28, 19, 16, 19, 28, 43, 64, 81, 57, 39, 27, 21, 21, 27, 39, 57, 81, 100, 73, 52, 37, 28, 25, 28, 37, 52, 73, 100, 121, 91, 67, 49, 37, 31, 31, 37, 49, 67, 91, 121
Offset: 0

Views

Author

Rémy Sigrist, Nov 06 2021

Keywords

Comments

T(n, k) is the norm of the Eisenstein integer n + k*w (where w = -1/2 + sqrt(-3)/2 is a primitive cube root of unity).
All terms belong to A003136.

Examples

			Array T(n, k) begins:
  n\k|    0   1   2   3   4   5   6   7   8   9   10
  ---+----------------------------------------------
    0|    0   1   4   9  16  25  36  49  64  81  100
    1|    1   1   3   7  13  21  31  43  57  73   91
    2|    4   3   4   7  12  19  28  39  52  67   84
    3|    9   7   7   9  13  19  27  37  49  63   79
    4|   16  13  12  13  16  21  28  37  48  61   76
    5|   25  21  19  19  21  25  31  39  49  61   75
    6|   36  31  28  27  28  31  36  43  52  63   76
    7|   49  43  39  37  37  39  43  49  57  67   79
    8|   64  57  52  49  48  49  52  57  64  73   84
    9|   81  73  67  63  61  61  63  67  73  81   91
   10|  100  91  84  79  76  75  76  79  84  91  100
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := n^2 - n*k + k^2; Table[T[k, n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    T(n,k) = n^2 - n*k + k^2

Formula

T(n, k) = T(k, n).
T(n, 0) = T(n, n) = n^2.
T(n, k) = A048147(n, k) - A004247(n, k).
G.f.: (x - 5*x*y + y*(1 + y) + x^2*(1 + y^2))/((1 - x)^3*(1 - y)^3). - Stefano Spezia, Nov 08 2021

A375577 Array read by ascending antidiagonals: A(n,k) = k^n + k*n + 1.

Original entry on oeis.org

2, 1, 2, 1, 3, 2, 1, 4, 5, 2, 1, 5, 9, 7, 2, 1, 6, 15, 16, 9, 2, 1, 7, 25, 37, 25, 11, 2, 1, 8, 43, 94, 77, 36, 13, 2, 1, 9, 77, 259, 273, 141, 49, 15, 2, 1, 10, 143, 748, 1045, 646, 235, 64, 17, 2, 1, 11, 273, 2209, 4121, 3151, 1321, 365, 81, 19, 2
Offset: 0

Views

Author

Stefano Spezia, Aug 19 2024

Keywords

Examples

			Array begins:
  2, 2,  2,   2,    2,     2, ...
  1, 3,  5,   7,    9,    11, ...
  1, 4,  9,  16,   25,    36, ...
  1, 5, 15,  37,   77,   141, ...
  1, 6, 25,  94,  273,   646, ...
  1, 7, 43, 259, 1045,  3151, ...
  1, 8, 77, 748, 4121, 15656, ...
  ...
		

Crossrefs

Cf. A000290, A004247, A004248, A005408 (n=1), A005491 (n=3), A007395 (n=0), A054977 (k=0), A176691 (k=2), A176805 (k=3), A176916 (k=5), A176972 (k=7), A214647.
Cf. A375578 (antidiagonal sums).

Programs

  • Mathematica
    A[0,0]=2; A[n_,k_]:=k^n+k*n+1;Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten

Formula

G.f. for the k-th column: (2*x^2 - 3*x - k^2 + k + 1)/((x - 1)^2*(x - k)).
E.g.f. for the k-th column: exp(x)*(1 + exp((k-1)*x) + k*x).
A(n,1) = n + 2.
A(2,n) = A000290(n+1).
A(n,n) = 2*A214647(n) + 1.

A363436 Array read by ascending antidiagonals: A(n, k) = k*n^2, with k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 4, 2, 0, 0, 9, 8, 3, 0, 0, 16, 18, 12, 4, 0, 0, 25, 32, 27, 16, 5, 0, 0, 36, 50, 48, 36, 20, 6, 0, 0, 49, 72, 75, 64, 45, 24, 7, 0, 0, 64, 98, 108, 100, 80, 54, 28, 8, 0, 0, 81, 128, 147, 144, 125, 96, 63, 32, 9, 0, 0, 100, 162, 192, 196, 180, 150, 112, 72, 36, 10, 0
Offset: 0

Views

Author

Stefano Spezia, Jul 08 2023

Keywords

Examples

			The array begins:
  0,  0,  0,   0,   0,   0,   0, ...
  0,  1,  2,   3,   4,   5,   6, ...
  0,  4,  8,  12,  16,  20,  24, ...
  0,  9, 18,  27,  36,  45,  54, ...
  0, 16, 32,  48,  64,  80,  96, ...
  0, 25, 50,  75, 100, 125, 150, ...
  0, 36, 72, 108, 144, 180, 216, ...
  ...
		

Crossrefs

Cf. A000290 (k = 1), A001105 (k = 2), A033428 (k = 3), A016742 (k = 4), A033429 (k = 5), A033581 (k = 6), A033582 (k = 7), A139098 (k = 8), A016766 (k = 9), A033583 (k = 10), A033584 (k = 11), A135453 (k = 12), A152742 (k = 13), A144555 (k = 14), A064761 (k = 15), A016802 (k = 16), A244630 (k = 17), A195321 (k = 18), A244631 (k = 19), A195322 (k = 20), A064762 (k = 21), A195323 (k = 22), A244632 (k = 23), A195824 (k = 24), A016850 (k = 25), A244633 (k = 26), A244634 (k = 27), A064763 (k = 28), A244635 (k = 29), A244636 (k = 30).
Cf. A001477 (n = 1), A008586 (n = 2), A008591 (n = 3), A008598 (n = 4), A008607 (n = 5), A044102 (n = 6), A152691 (n = 8).
Cf. A000007 (n = 0 or k = 0), A000578 (main diagonal), A002415 (antidiagonal sums), A004247.

Programs

  • Mathematica
    A[n_,k_]:=k n^2; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten

Formula

O.g.f.: x*y*(1 + x)/((1 - x)^3*(1 - y)^2).
E.g.f.: x*y*(1 + x)*exp(x + y).
A(n, k) = n*A004247(n, k).
Previous Showing 21-28 of 28 results.