cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A339842 Heinz numbers of non-graphical, multigraphical integer partitions of even numbers.

Original entry on oeis.org

9, 25, 30, 49, 63, 70, 75, 84, 100, 121, 147, 154, 165, 169, 175, 189, 196, 198, 210, 220, 250, 264, 273, 280, 286, 289, 325, 343, 351, 361, 363, 364, 385, 390, 441, 442, 462, 468, 484, 490, 495, 507, 520, 525, 529, 550, 561, 588, 594, 595, 616, 624, 637, 646
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2020

Keywords

Comments

An integer partition is graphical if it comprises the multiset of vertex-degrees of some graph, and multigraphical if it comprises the multiset of vertex-degrees of some multigraph.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      9: {2,2}        189: {2,2,2,4}      363: {2,5,5}
     25: {3,3}        196: {1,1,4,4}      364: {1,1,4,6}
     30: {1,2,3}      198: {1,2,2,5}      385: {3,4,5}
     49: {4,4}        210: {1,2,3,4}      390: {1,2,3,6}
     63: {2,2,4}      220: {1,1,3,5}      441: {2,2,4,4}
     70: {1,3,4}      250: {1,3,3,3}      442: {1,6,7}
     75: {2,3,3}      264: {1,1,1,2,5}    462: {1,2,4,5}
     84: {1,1,2,4}    273: {2,4,6}        468: {1,1,2,2,6}
    100: {1,1,3,3}    280: {1,1,1,3,4}    484: {1,1,5,5}
    121: {5,5}        286: {1,5,6}        490: {1,3,4,4}
    147: {2,4,4}      289: {7,7}          495: {2,2,3,5}
    154: {1,4,5}      325: {3,3,6}        507: {2,6,6}
    165: {2,3,5}      343: {4,4,4}        520: {1,1,1,3,6}
    169: {6,6}        351: {2,2,2,6}      525: {2,3,3,4}
    175: {3,3,4}      361: {8,8}          529: {9,9}
For example, a complete list of all multigraphs with degrees (4,2,2,2) is:
  {{1,2},{1,2},{1,3},{1,4},{3,4}}
  {{1,2},{1,3},{1,3},{1,4},{2,4}}
  {{1,2},{1,3},{1,4},{1,4},{2,3}}
Since none of these is strict, i.e., a graph, the Heinz number 189 is in the sequence.
		

Crossrefs

See link for additional cross references.
Distinct prime shadows (images under A181819) of A340017.
A000070 counts non-multigraphical partitions (A339620).
A000569 counts graphical partitions (A320922).
A027187 counts partitions of even length (A028260).
A058696 counts partitions of even numbers (A300061).
A096373 cannot be partitioned into strict pairs.
A209816 counts multigraphical partitions (A320924).
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A320893 can be partitioned into distinct pairs but not into strict pairs.
A339560 can be partitioned into distinct strict pairs.
A339617 counts non-graphical partitions of 2n (A339618).
A339659 counts graphical partitions of 2n into k parts.

Programs

  • Mathematica
    strr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strr[n/d],Min@@#>=d&]],{d,Select[Divisors[n],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],EvenQ[Length[nrmptn[#]]]&& Select[strr[Times@@Prime/@nrmptn[#]],UnsameQ@@#&]=={}&&strr[Times@@Prime/@nrmptn[#]]!={}&]

Formula

Equals A320924 /\ A339618.
Equals A320924 \ A320922.

A007721 Number of distinct degree sequences among all connected graphs with n nodes.

Original entry on oeis.org

1, 1, 2, 6, 19, 68, 236, 863, 3137, 11636, 43306, 162728, 614142, 2330454, 8875656, 33924699, 130038017, 499753560, 1924912505, 7429159770, 28723877046, 111236422377, 431403469046, 1675316533812, 6513837677642, 25354842098354, 98794053266471, 385312558567775
Offset: 1

Views

Author

Keywords

Comments

Sometimes called "graphical partitions", although this term is deprecated.

Crossrefs

Cf. A000569, A004250, A004251, A007722, A029889; A095268 (analog for all graphs).

Extensions

a(9) corrected by Gordon Royle, Aug 30 2006
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 19 2007
Prepended missing term a(1), Travis Hoppe, Aug 04 2014
a(22)-a(28) added by Wang Kai, Feb 15 2017

A029894 Number of directed (or Gale-Ryser) graphical partitions: degree-vector pairs (in-degree, out-degree) for directed graphs (loops allowed) with n vertices; or possible ordered pair (row-sum, column-sum) vectors for a 0-1 matrix.

Original entry on oeis.org

1, 2, 7, 34, 221, 1736, 15584, 153228, 1611189, 17826202, 205282376, 2441437708, 29816628471, 372314544202, 4737438631001, 61264426341926, 803488037899349, 10668478221202710, 143203795004873285, 1940953294927992976, 26536578116407809962, 365653739580163294032
Offset: 0

Views

Author

torsten.sillke(AT)lhsystems.com

Keywords

References

  • R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.

Crossrefs

Main diagonal of A327913.

Programs

Formula

Calculated using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser.
a(n) = F(n, n, 0, n) where F(b, c, t, w) = Sum_{i=0..b} Sum_{j=ceiling((t+i)/w)..min(t+i, c)} F(i, j, t+i-j, w-1) for w > 0, F(b, c, 0, 0) = 1 and F(b, c, t, 0) = 0 for t > 0. - Andrew Howroyd, Nov 01 2019

Extensions

"Loops allowed" added to the definition by Brendan McKay, Oct 20 2015
a(0)=1 prepended and terms a(12) and beyond from Andrew Howroyd, Oct 31 2019

A005155 Number of degree sequences of n-node graphs.

Original entry on oeis.org

1, 1, 2, 8, 54, 533, 6944, 111850, 2135740, 47003045, 1168832808, 32363244260, 986532609608, 32810811179569, 1181865951824800, 45823912079507918, 1902469319507438352, 84195282530581058825, 3956365033583165905568, 196716723188140236180160
Offset: 0

Views

Author

Keywords

Comments

Given a simple graph, the degree sequence maps each vertex to the valence or degree of that vertex.

Examples

			1 + x + 2*x^2 + 8*x^3 + 54*x^4 + 533*x^5 + 6944*x^6 + 111850*x^7 + 2135740*x^8 + ...
a(3)=8 because we have: {0, 0, 0}, {0, 1, 1}, {1, 0, 1}, {1, 1, 0}, {1, 1, 2}, {1, 2, 1}, {2, 1, 1}, {2, 2, 2}. - _Geoffrey Critzer_, Aug 24 2016
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.16.

Crossrefs

Cf. A004251 for graphs up to isomorphism.

Programs

  • Mathematica
    max = 18; w = ProductLog; f[x_] := (Sqrt[(1 - w[-x])/(1 + w[-x])] - w[-x]/x)*(Exp[-w[-x]^2/2]/ 2); CoefficientList[ Series[f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Dec 12 2011, after Vladeta Jovovic *)
  • PARI
    {a(n) = local(A, B, C); if( n<0, 0, A = sum( k=1, n, k^k * x^k / k!, x * O(x^n)); B = intformal( 1 + A); C = intformal( 1 / (1 - B)); n! * polcoeff( (1 + (1 - B) * sqrt(1 + 2*A)) / 2 * exp(C), n))} /* Michael Somos, Aug 19 2005 */

Formula

There is an explicit formula and e.g.f.
E.g.f.: (sqrt((1-LambertW(-x))/(1+LambertW(-x)))-LambertW(-x)/x)*exp(-LambertW(-x)^2/2)/2. - Vladeta Jovovic, Jun 21 2007
a(n) ~ Gamma(3/4) * n^(n-1/4) / (2^(3/4) * exp(1/2) * sqrt(Pi)) * (1 - 11*Pi/(24*Gamma(3/4)^2*sqrt(n))). - Vaclav Kotesovec, Jul 09 2013

Extensions

Minor edits by Vaclav Kotesovec, Mar 31 2014

A007722 Number of graphical partitions of biconnected graphs with n nodes.

Original entry on oeis.org

1, 3, 9, 34, 125, 473, 1779, 6732, 25492, 96927, 369463, 1412700, 5415117, 20807502, 80120350, 309106496, 1194609429, 4624160156, 17925278497, 69578272204, 270401326899, 1052036082719, 4097343156323, 15973179953261, 62325892264031, 243392644741599
Offset: 3

Views

Author

Keywords

References

  • F. Ruskey, Alley CATs in search of good homes, Congress. Numerant., 102 (1994) 97-110.

Crossrefs

Extensions

a(15)-a(28) added by Kai Wang, Feb 15 2017

A029890 Number of odd graphical partitions.

Original entry on oeis.org

1, 2, 7, 20, 70, 234, 832, 2956, 10759, 39394, 145892, 543564, 2038831, 7684116, 29092055, 110550260, 421495147, 1611662256
Offset: 1

Views

Author

TORSTEN.SILLKE(AT)LHSYSTEMS.COM

Keywords

References

  • R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.

Crossrefs

Formula

Calculated using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser.

A029891 Number of even graphical partitions.

Original entry on oeis.org

1, 3, 7, 23, 70, 242, 832, 2983, 10759, 39482, 145892, 543877, 2038831, 7685211, 29092055, 110554267, 421495147, 1611676767
Offset: 1

Views

Author

TORSTEN.SILLKE(AT)LHSYSTEMS.COM

Keywords

References

  • R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.

Crossrefs

Formula

Calculated using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser.

A259873 Triangle read by rows: T(n,k) (n >= 3, 3 <= k <= n) = number of possible graphical partitions for simple graphs with n non-isolated nodes and k edges.

Original entry on oeis.org

1, 0, 2, 0, 1, 4, 0, 1, 4, 7, 0, 0, 4, 9, 11, 0, 0, 2, 11, 15, 17, 0, 0, 1, 11, 22, 25, 25, 0, 0, 1, 9, 26, 38, 37, 36, 0, 0, 0, 7, 29, 49, 58, 55, 50, 0, 0, 0, 5, 29, 63, 81, 87, 77, 70
Offset: 3

Views

Author

N. J. A. Sloane, Jul 09 2015

Keywords

Examples

			Triangle begins:
1,
0,2,
0,1,4,
0,1,4,7,
0,0,4,9,11,
0,0,2,11,15,17,
0,0,1,11,22,25,25,
0,0,1,9,26,38,37,36,
0,0,0,7,29,49,58,55,50,
0,0,0,5,29,63,81,87,77,70,
...
		

References

  • P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978). Contains table for n <= 27.

Crossrefs

A004250 is a diagonal. Cf. A000088, A004251.

A029893 Number of graphical partitions with up to n parts (?).

Original entry on oeis.org

1, 2, 4, 10, 24, 68, 198, 656, 2112
Offset: 1

Views

Author

torsten.sillke(AT)lhsystems.com

Keywords

References

  • R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.

Crossrefs

A possible duplicate of A028506.

Formula

Calculated using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser.

A338512 a(n) is the number of Chvátal-satisfying graphical n-sequences.

Original entry on oeis.org

6, 24, 67, 263, 823, 3276, 10839, 43287, 147943
Offset: 5

Views

Author

Stefano Spezia, Nov 01 2020

Keywords

Crossrefs

Cf. A000569, A004251, A338513 (spurious version).

Formula

a(n) = O(4^n/n^3) where O indicates the big O notation (see Ref. 2 in Bauer).
Previous Showing 11-20 of 24 results. Next