cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A166263 a(j) = maximum value of n for each distinct increasing value of (Sum of the quadratic non-residues of prime(n) - Sum of the quadratic residues of prime(n)) / prime(n) for each j.

Original entry on oeis.org

348511, 38, 155, 389, 778, 1296, 1828, 2321, 3683, 3935, 4078, 6184, 8783, 9013, 9880, 15182, 12449, 19828, 18884, 14593, 22316, 25738, 26064, 26670, 31953, 33332, 45025, 35788, 37881, 50299, 39562, 49598, 77850, 56777, 53024, 70443, 71992
Offset: 1

Views

Author

Keywords

Comments

a(1) appears to increase indefinitely, so the static sequence starts from a(2).
The value of a(1) is the index of the largest prime p < 5*10^6 for which Sum of the quadratic non-residues of p = Sum of the quadratic residues of p.
The table below shows for each value of a(j) the corresponding values of p(a(j)) and (Sum of the quadratic non-residues of p(a(j)) - Sum of the quadratic residues of p(a(j))) / p(a(j)):
.
j a(j) prime(a(j)) (SQN-SQR)/prime(a(j))
-- ------ ----------- ---------------------
1 348511 4999961 0
2 38 163 1
3 155 907 3
4 389 2683 5
5 778 5923 7
6 1296 10627 9
7 1828 15667 11
8 2321 20563 13
9 3683 34483 15
10 3935 37123 17
11 4078 38707 19
12 6184 61483 21
13 8783 90787 23
14 9013 93307 25
15 9880 103387 27
16 15182 166147 29
17 12449 133387 31
18 19828 222643 33
19 18884 210907 35
20 14593 158923 37
21 22316 253507 39
22 25738 296587 41
23 26064 300787 43
24 26670 308323 45
25 31953 375523 47
26 33332 393187 49
27 45025 546067 51
28 35788 425107 53
29 37881 452083 55
30 50299 615883 57
31 39562 474307 59
32 49598 606643 61
33 77850 991027 63
34 56777 703123 65
35 53024 652723 67
36 70443 888427 69
37 71992 909547 71
38 70328 886867 73
39 72479 916507 75

Crossrefs

A165520 Antidiagonal writing from three rows trio A165351,A165355,A165367 (first,second and third trisections of A026741).

Original entry on oeis.org

0, 1, 3, 1, 2, 3, 5, 7, 9, 4, 5, 6, 11, 13, 15, 7, 8, 9, 17, 19, 21, 10, 11, 12, 23, 25, 27, 13, 14, 15, 29, 31, 33
Offset: 1

Views

Author

Paul Curtz, Sep 21 2009

Keywords

Comments

(6n+3)-th term is 6n+3=A016945. 6n-th term is 3n=3*n=A008585.

Formula

Mix (A004273(3n),A004273(3n+1),A004273(3n+2)), (A000027(3n),A000027(3n+1),A000027(3n+2)).

A286016 Signed continued fraction expansion with all signs negative of tanh(1).

Original entry on oeis.org

1, 5, 2, 2, 2, 2, 9, 2, 2, 2, 2, 2, 2, 2, 2, 13, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 17, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 21, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 25, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Kutlwano Loeto, Apr 30 2017

Keywords

Comments

For any given sequence of signs (e_1, e_2, ..., e_n, ...) one may define the signed continued fraction expansion of a real number x by using floor or ceiling in the step i according to e_i = +1 or e_i = -1. In the present case for the sequence (-1, -1, -1, -1, ...) consisting of only negative signs the ceiling is taken at each step, and the formulas with x_0 = x are a_n = ceiling(x_n) and x_{n+1} = 1/(a_n - x_n). See chapter 1 and 2 of the book by Perron.

Examples

			a(2) = 5, a(3) = a(4) = a(5) = a(6) = 2, a(7) = 9, etc. These numbers are obtained from the partial quotients xj as follows:
x2 =  (1 +  e^2)/( 2 + 0e^2) ~4.17 so that a(2)=ceiling(x2)=5;
x3 =  (2 + 0e^2)/( 9 - e^2)  ~1.21 so that a(3)=ceiling(x3)=2;
x4 =  (9 -  e^2)/(16 - 2e^2) ~1.31 so that a(4)=ceiling(x4)=2;
x5 = (16 - 2e^2)/(23 - 3e^2) ~1.46 so that a(5)=ceiling(x5)=2;
x6 = (23 - 3e^2)/(30 - 4e^2) ~1.87 so that a(6)=ceiling(x6)=2;
x7 = (30 - 4e^2)/(37 - 5e^2) ~8.11 so that a(7)=ceiling(x7)=9.
The pairs of integers appearing in the xj's are obtained as the principal or as every other of the non-principal approximating fractions of e^2 in the sense of the A. Hurwitz reference.
		

Crossrefs

Cf. A004273 (continued fraction of tanh(1)), A280135, A280136.

Programs

  • Maple
    x:=(exp(1)-exp(-1))/(exp(1)+exp(-1)):b:=ceil(x): x1:=1/(b-x):L:=[b]:
    for k from 0 to 40 do:
    b1:=ceil(x1): x1:=1/(b1-x1): L:=[op(L),b1]: od: print(L);

Formula

Using an obvious condensed notation we get for the sequence 1, 5, 2^(4), 9, 2^(8), 13, 2^(12), 17, 2^(16), 21, 2^(20), ... where 2^(m) means m copies of 2.

Extensions

More terms from Jinyuan Wang, Jul 02 2022
Previous Showing 31-33 of 33 results.