cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A332531 Even numbers k such that A103230(k) is a perfect square.

Original entry on oeis.org

442, 818, 1130, 1226, 1326, 1576, 2454, 3094, 3390, 3678, 3978, 4728, 4862, 5330, 5726, 5986, 6452, 7362, 7786, 7910, 8362, 8398, 8582, 8998, 9282, 10166, 10170, 10250, 11032, 11034, 11934, 12410, 12430, 13486, 13702, 14184, 14586, 15542, 15990, 17178, 17336
Offset: 1

Views

Author

Amiram Eldar, Feb 15 2020

Keywords

Comments

The odd numbers k such that A103230(k) is a perfect square are the numbers that are divisible only by primes congruent to 3 mod 4 (A004614).

Examples

			442 is a term since A103230(442) = 2433600 = 1560^2.
		

Crossrefs

Programs

  • Mathematica
    Select[2 * Range[9000], IntegerQ @ Sqrt[Abs[DivisorSigma[1, #, GaussianIntegers -> True]]^2] &]

A337140 Numbers m = a + b with a and b positive integers whose product a*b = k^2 is a square.

Original entry on oeis.org

2, 4, 5, 6, 8, 10, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 25, 26, 28, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 50, 51, 52, 53, 54, 55, 56, 58, 60, 61, 62, 64, 65, 66, 68, 70, 72, 73, 74, 75, 76, 78, 80, 82, 84, 85, 86, 87, 88, 89, 90, 91
Offset: 1

Views

Author

Hein van Winkel, Aug 18 2020

Keywords

Comments

Related to Heron triangles with a partition point on one of the sides. Calculations become quite different when the partition a + b = m gives the perfect square k^2 = a*b.
These numbers coincide with the numbers > 1 not in A004614.
Let m = 2^t * p_1^a_1 * p_2^a_2 * ... * p_r^a_r * q_1^b_1 * q_2^b_2 * ... * q_s^b_s with t >= 0, a_i >= 0 for i=1..r, where p_i == 1 (mod 4) for i=1..r and q_j == -1 (mod 4) for j=1..s.
Even numbers (A005843) belong to this sequence: m = 2*k and p = k^2.
Numbers divisible by a prime q congruent to 1 (mod 4) (cf. A004613) belong to this sequence: m = q * m_1 = (u^2 + v^2) * m_1 and p = (u*v*q)^2.
The other numbers are divisible only by primes congruent to 3 (mod 4) (cf. A004614).
If a term m is not in the union of A005843 and A004613, then m = q_1^b_1 * q_2^b_2 * ... * q_s^b_s is a term of A018825 (numbers not the sum of two nonzero squares) = q_i * m_1 = q_i *(u^2 + v) and p = q_i^2 * u^2 * v for all u^2 < m_1 and v nonsquare. And so m is not a term: A contradiction.

Examples

			Even numbers m = 2*k give a = b = k. For example, 94 = 47+47 and k^2 = 47^2.
Numbers which are divisible by a prime q congruent to 1 (mod 4) give m = q*m' = (u^2 + v^2)*m' and p = (u*v*m')^2. For example, 87 = 3*29 = 3*(25 + 4) = (5*4*3)^2 = 60^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100], Length @ Select[Times @@@ IntegerPartitions[#, {2}], IntegerQ @ Sqrt[#1] &] > 0 &] (* Amiram Eldar, Aug 26 2020 *)
  • PARI
    upto(n) = { my(res = List(vector(n\2, i, 2*i))); forstep(i = 1, n, 2, c = core(i); for(k = 1, sqrtint((n-i)\c), listput(res, i + c*k^2); ) ); listsort(res, 1); res } \\ David A. Corneth, Aug 26 2020
    
  • PARI
    is(n) = for(i = 1, n\2 + 1, if(issquare(i * (n-i)), return(n>1))); 0 \\ David A. Corneth, Aug 26 2020
    
  • Python
    from itertools import count, islice
    from sympy import primefactors
    def A337140_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n: n&1^1 or not all(p&2 for p in primefactors(n>>(~n & n-1).bit_length())), count(max(startvalue,2)))
    A337140_list = list(islice(A337140_gen(),30)) # Chai Wah Wu, Aug 21 2024

A350402 Numbers k such that binomial(k, 2) divides binomial(2^k-2, 2).

Original entry on oeis.org

2, 3, 7, 11, 19, 31, 43, 127, 163, 211, 271, 311, 331, 379, 487, 571, 631, 811, 883, 991, 1459, 1471, 1747, 2311, 2531, 2647, 2791, 2971, 3079, 3631, 3943, 4091, 5171, 5419, 6571, 7591, 8863, 8911, 9199, 9791, 9931, 10891, 11827, 11971, 13591, 14407, 15391, 16759, 17011, 18523, 19531, 21871, 22111, 23431, 24967
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 29 2021

Keywords

Comments

Conjecture: aside from the first term, this is a subsequence of A094179 (numbers congruent to 3 mod 4 which are divisible only by primes congruent to 3 mod 4).
The conjecture is false: a(2295) = 508606771 = 19531 * 26041 is not in A094179, nor even A004614. - Charles R Greathouse IV, Jan 22 2022

Crossrefs

Supersequence of A069051.
Cf. A069051 (binomial(k,2) divides binomial(2^k-1, 2)?), A094179, A350176.

Programs

  • Magma
    [n: n in [2..25000] |  IsZero(Binomial(2^n-2, 2) mod Binomial(n, 2))];
    
  • Mathematica
    Select[Range[2, 25000], Divisible[Binomial[2^# - 2, 2], Binomial[#,2]] &] (* Amiram Eldar, Dec 29 2021 *)
  • PARI
    isok(n) = (n>1) && ((binomial(2^n-2, 2) % binomial(n, 2)) == 0); \\ Michel Marcus, Jan 04 2022
    
  • PARI
    is(n)=my(m=n^2-n,t=Mod(2,m)^n-2); t*(t-1)==0 \\ Charles R Greathouse IV, Jan 20 2022

A354070 Lesser of an amicable pair in which both members are divisible only by primes congruent to 3 (mod 4).

Original entry on oeis.org

294706414233, 518129600373, 749347913853, 920163589191, 1692477265941, 2808347861781, 3959417614383, 4400950312143, 9190625896683, 10694894578137, 12615883061859, 15028451404659, 18971047742031, 21981625463259, 29768959571967, 37423211019579, 54939420064683, 69202873206621
Offset: 1

Views

Author

Amiram Eldar, May 16 2022

Keywords

Comments

Since the factorization of numbers that are divisible only by primes congruent to 3 (mod 4) is the same also in Gaussian integers, these pairs are also Gaussian amicable pairs.
There are 4197267 lesser members of amicable pairs below 10^20 and only 1565 are in this sequence.
The least pair, (294706414233, 305961592167), was discovered by Herman J. J. te Riele in 1995.
The larger counterparts are in A354071.

Examples

			294706414233 is a term since (294706414233, 305961592167) is an amicable pair: A001065(294706414233) = 305961592167 and A001065(305961592167) = 294706414233, 294706414233 = 3^4 * 7^2 * 11 * 19 * 47 * 7559, and 3, 7, 11, 19, 47 and 7559 are all congruent to 3 (mod 4), and 305961592167 = 3^4 * 7 * 11 * 19 * 971 * 2659, and 3, 7, 11, 19, 971 and 2659 are all congruent to 3 (mod 4).
		

Crossrefs

Subsequence of A002025 and A004614.

A354071 Larger of an amicable pair in which both members are divisible only by primes congruent to 3 (mod 4).

Original entry on oeis.org

305961592167, 523630799307, 758052380547, 964086778809, 1697959925739, 2961402044139, 4049489137617, 4475588004657, 9309948700437, 10759267751463, 12799047697821, 15133576811661, 21200708842929, 22067361672741, 30807498770433, 38260957786821, 56250902008917, 70669851785379
Offset: 1

Views

Author

Amiram Eldar, May 16 2022

Keywords

Comments

The terms are ordered according to their lesser counterparts (A354070).
See A354070 for more details.

Crossrefs

Subsequence of A002046 and A004614.

A371010 Powerful numbers that are the sum of 2 squares.

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 32, 36, 49, 64, 72, 81, 100, 121, 125, 128, 144, 169, 196, 200, 225, 256, 288, 289, 324, 361, 392, 400, 441, 484, 500, 512, 529, 576, 625, 648, 676, 729, 784, 800, 841, 900, 961, 968, 1000, 1024, 1089, 1125, 1152, 1156, 1225, 1296, 1352, 1369
Offset: 1

Views

Author

Amiram Eldar, Mar 08 2024

Keywords

Comments

Each term can be decomposed in a unique way as 2^m * i * j^2 where m >= 2, i is a powerful number whose prime factors are all of the form 4*k + 1 (A369563), and j is a number whose prime factors are all of the form 4*k + 3 (A004614).

Crossrefs

Intersection of A001481 and A001694.
A371011 is a subsequence.

Programs

  • Mathematica
    Select[Range[1500], SquaresR[2, #] > 0 && (# == 1 || Min[FactorInteger[#][[;; , 2]]] > 1) &]
  • PARI
    is(n) = {my(f=factor(n)); for(i=1, #f~, if(f[i, 2] == 1 || (f[i, 2]%2 && f[i, 1]%4 == 3), return(0))); 1;}

Formula

The number of terms that do not exceed x is ~ c * sqrt(x), where c = (6/Pi^2) * (1 + 1/(3*(sqrt(2)-1))) * Product_{primes p == 1 (mod 4)} (1 + 1/((sqrt(p)-1)*(p+1))) * Product_{primes p == 3 (mod 4)} (1 + 1/(p^2-1)) = 1.58769... (Jakimczuk, 2024, Theorem 4.7, p. 50).
Sum_{n>=1} 1/a(n) = (3/2) * Product_{primes p == 1 (mod 4)} (1 + 1/(p*(p-1))) * Product_{primes p == 3 (mod 4)} (1 + 1/(p^2-1)) = (3*Pi^2/16) * A334424 = 1.86676402705119927669... .

A371014 The number of divisors of n that are the sum of 2 squares.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 1, 4, 2, 4, 1, 3, 2, 2, 2, 5, 2, 4, 1, 6, 1, 2, 1, 4, 3, 4, 2, 3, 2, 4, 1, 6, 1, 4, 2, 6, 2, 2, 2, 8, 2, 2, 1, 3, 4, 2, 1, 5, 2, 6, 2, 6, 2, 4, 2, 4, 1, 4, 1, 6, 2, 2, 2, 7, 4, 2, 1, 6, 1, 4, 1, 8, 2, 4, 3, 3, 1, 4, 1, 10, 3, 4, 1, 3, 4, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Mar 08 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 4] == 3, Floor[e/2] + 1, e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1]%4 == 3, f[i, 2]\2 + 1, f[i, 2] + 1));}

Formula

Multiplicative with a(p^e) = floor(e/2) + 1 if p == 3 (mod 4), and e+1 otherwise.
a(n) = A000005(n) if and only if n is in A072437.
a(n) = A046951(n) if and only if n is in A004614.
a(n) = 1 if and only if n is in A167181.

A090780 a(n) = n*Product_{p prime, p|n} (p - 1)/2.

Original entry on oeis.org

1, 1, 3, 2, 10, 3, 21, 4, 9, 10, 55, 6, 78, 21, 30, 8, 136, 9, 171, 20, 63, 55, 253, 12, 50, 78, 27, 42, 406, 30, 465, 16, 165, 136, 210, 18, 666, 171, 234, 40, 820, 63, 903, 110, 90, 253, 1081, 24, 147, 50, 408, 156, 1378, 27, 550, 84, 513, 406, 1711, 60, 1830, 465, 189
Offset: 1

Views

Author

Benoit Cloitre, Feb 12 2004

Keywords

Comments

a(2n+1) is the conjectured value of the length of period of sequence of Genocchi number of first kind read modulo (2n + 1) (cf. A001469).

Crossrefs

Programs

  • Maple
    A023900 := proc(n) add( d*numtheory[mobius](d),d=numtheory[divisors](n)) ; end proc:
    A001221 := proc(n) nops(numtheory[factorset](n)) ; end proc:
    A076479 := proc(n) (-1)^A001221(n) ; end proc:
    A034444 := proc(n) 2^A001221(n) ;end proc:
    A090780 := proc(n) n/A076479(n)/A034444(n) *A023900(n); end proc:
    seq(A090780(n),n=1..20) ; # R. J. Mathar, Apr 14 2011
  • Mathematica
    a[n_] := Module[{f, p, e}, fun[p_, e_] := (p - 1)*p^e/2;
    If[n == 1, 1, Times @@ (fun @@@ FactorInteger[n])]]; Array[a, 50] (* Amiram Eldar, Nov 23 2018 *)
  • PARI
    a(n) = my(f=factor(n)[,1]); n*prod(k=1, #f, (f[k]-1)/2); \\ Michel Marcus, May 26 2019
    
  • PARI
    a(n) = eulerphi(n)*factorback(factorint(n)[, 1]/2) \\ Jianing Song, Aug 11 2023

Formula

a(n) = (n/(-2)^omega(n))*(Sum_{d|n} d*mu(d)) = n*A023900(n)/(A076479(n)*A034444(n)).
a(n) = n*A173557(n)/2. - R. J. Mathar, Apr 14 2011
From Jianing Song, Nov 22 2018: (Start)
Multiplicative with a(p^e) = (p - 1)*p^e/2 = A000217(p-1)*p^(e-1).
a(n) = A299822(n)/2^A001221(n).
a(prime(n)) = A034953(n).
a(n) is odd if and only if n = A004614(k) or 2*A004614(k). (End)
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 2/(p-1)^2) = 5.72671092223951683002237367406848393189560038246828458038126468772919585... - Vaclav Kotesovec, Sep 20 2020
From Jianing Song, Aug 11 2023: (Start)
a(n) = phi(n) * Product_{p|n, p prime} (p/2), where phi = A000010.
Equals A000010(n)*A007947(n)/2^A001221(n). (End)

A260872 Squarefree numbers k such that k+1 has no primes of the form 4*m-1 and at most one 2 in its prime factorization.

Original entry on oeis.org

1, 33, 57, 73, 105, 129, 145, 177, 193, 201, 217, 249, 273, 313, 337, 345, 385, 393, 409, 457, 465, 481, 537, 553, 561, 577, 609, 633, 649, 673, 697, 705, 745, 753, 777, 793, 817, 849, 865, 889, 897, 913, 921, 969, 985, 1009, 1041, 1065, 1081, 1113, 1129
Offset: 1

Views

Author

J. Lowell, Aug 01 2015

Keywords

Comments

An even number k is congruent to either 0 or 2 mod 4. If congruent to 0, it is divisible by 4 and thus not squarefree. If k is congruent to 2, k+1 will be one less than a multiple of 4, and thus at least one prime factor of k+1 will be one less than a multiple of 4. Thus, there are no even numbers in this sequence.
From the author's comment above, all sequence terms must be odd, so k+1 must always be even and k+1 will always be singly even. - Ray Chandler, Aug 03 2015

Examples

			41 + 1 = 42 = 2*3*7 and both 3 and 7 are prime numbers of the form 4*n-1, so 41 is not a term of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1100],SquareFreeQ[#]&&IntegerExponent[#+1,2]<2&&Select[First/@FactorInteger[#+1],Mod[#,4]==3&]=={}&] (* Ray Chandler, Aug 02 2015 *)

A269354 Numbers k such that 10k - 3, 10k - 1, 10k + 1 and 10k + 3 are divisible only by primes congruent to 3 mod 4.

Original entry on oeis.org

8, 13, 21, 44, 50, 75, 89, 99, 133, 146, 150, 245, 254, 289, 319, 327, 395, 468, 500, 517, 579, 601, 608, 691, 704, 761, 764, 878, 1011, 1098, 1125, 1199, 1266, 1298, 1313, 1315, 1414, 1495, 1544, 1716, 1723, 1752, 1762, 1781, 1844, 2043, 2073, 2186, 2281, 2291, 2309, 2360, 2444, 2455, 2457
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 23 2015

Keywords

Comments

Prime terms: 13, 89, 601, 691, 761, 1723, 2281, 2309, 2693, 5437, 5821, 6199, ...

Examples

			8 is a term because 10*8 - 3 = 77 = 7*11, 10*8 - 1 = 79, 10*8 + 1 = 81 = 3^4 and 10*8 + 3 = 83 are divisible only by primes congruent to 3 mod 4.
		

Crossrefs

Cf. A004614.

Programs

  • Magma
    [n : n in [1..3000] | forall{d: d in PrimeDivisors(10*n-3) | d mod 4 eq 3}
    and forall{d: d in PrimeDivisors(10*n-1) | d mod 4 eq 3}
    and forall{d: d in PrimeDivisors(10*n+1) | d mod 4 eq 3}
    and forall{d: d in PrimeDivisors(10*n+3) | d mod 4 eq 3}] ;
  • Maple
    filter:= n ->
       andmap(t -> numtheory:-factorset(t) mod 4 = {3},[10*n-3,10*n-1,10*n+1,10*n+3]):
    select(filter, [$1..10000]); # Robert Israel, Feb 25 2016
  • Mathematica
    pc3m4Q[n_]:=AllTrue[Flatten[FactorInteger[10 n+{-3,-1,1,3}],1][[All,1]], Mod[#,4]==3&]; Select[Range[2500],pc3m4Q] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 30 2018 *)
Previous Showing 21-30 of 33 results. Next