cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A111064 Numbers n such that the sum of the digits of the n-th Fibonacci number written in bases 2, 3, 5 and 7 is prime.

Original entry on oeis.org

7, 8, 10, 17, 47, 61, 70, 170, 185, 299, 766, 950, 1247, 1669, 1879, 2063, 2090, 2701, 3071, 5809, 6190, 7057, 7409, 8410, 12754, 13303, 13421, 14533, 16250, 18793, 24766, 24895, 27370, 28594, 28870, 29093, 29189, 30647, 31481, 36334, 38123, 38957
Offset: 1

Views

Author

Stefan Steinerberger, Nov 12 2005

Keywords

Examples

			21 is the 8th Fibonacci number. Written in bases 2,3,5,7 we obtain 10101, 210, 41 and 30. The sum of the digits of each of this representations is prime, so 8 is an element of the sequence.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Union@PrimeQ[Plus @@@ IntegerDigits[ Fibonacci@n, {2, 3, 5, 7}]] == {True}; Select[ Range[39285], fQ[ # ] &] (* Robert G. Wilson v *)
    Select[Range[40000],AllTrue[Total/@IntegerDigits[Fibonacci[#],{2,3,5,7}],PrimeQ]&] (* Harvey P. Dale, Sep 09 2021 *)
  • MuPAD
    for n from 1 to 1500 do a := numlib::fibonacci(n); if numlib::proveprime(numlib::sumOfDigits(a,2)) = TRUE then if numlib::proveprime(numlib::sumOfDigits(a,3)) = TRUE then if numlib::proveprime(numlib::sumOfDigits(a,5)) = TRUE then if numlib::proveprime(numlib::sumOfDigits(a,7)) = TRUE then print(n); end_if; end_if; end_if; end_if; end_for;

Extensions

More terms from Robert G. Wilson v, Nov 14 2005
Corrected by Harvey P. Dale, Sep 09 2021

A180280 Fibonacci numbers written in base 2, read as decimal numbers which then are prime.

Original entry on oeis.org

11, 101, 1011001, 100010100101111, 1100110010100000101000011101110110101011001011001101111101101011010101110010101, 1101011110011100100011101000011100001010001101001011001100110100000011001101101001010011011001100101010111
Offset: 1

Views

Author

Jonathan Vos Post, Aug 24 2010

Keywords

Comments

Subset of A020449 (Primes that contain digits 0 and 1 only).
Generated by A000045(k), k= 4, 5, 11, 22, 115, 154,... [R. J. Mathar, Aug 26 2010]
No further terms through the 5,000th Fibonacci number, which has 3,471 digits in base 2. - Harvey P. Dale, Sep 04 2024

Examples

			a(1) = 11 because 3 is the 4th Fibonacci number, 3 (base 2) = 11, and 11 (base 10) is prime.
a(2) = 101 because 5 is the 5th Fibonacci number, 5 (base 2) = 101, and 101 (base 10) is prime.
a(3) = 1011001 because 89 is the 11th Fibonacci number, 89 (base 2) = 1011001, and 1011001 (base 10) is prime.
a(4) = 100010100101111 because 17711 is the 22nd Fibonacci number, 17711 (base 2) = 100010100101111, and 100010100101111 (base 10) is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[FromDigits[IntegerDigits[#,2]]&/@Fibonacci[Range[1000]],PrimeQ] (* Harvey P. Dale, Sep 04 2024 *)

Formula

Primes in A004685. Primes in {A007088(A000045(n))}.

Extensions

Two more terms from R. J. Mathar, Aug 26 2010

A233524 Numbers n such that the binary expansion of Fibonacci(n) is a palindrome (leading zero digits are not permitted).

Original entry on oeis.org

0, 1, 2, 4, 5, 8
Offset: 1

Views

Author

L. Edson Jeffery, Dec 11 2013

Keywords

Comments

The next term of the sequence, if it exists, is greater than 10^5.
No more terms < 10^7. - Lars Blomberg, Jun 19 2014

Crossrefs

Cf. A000045 (Fibonacci), A004685 (binary Fibonacci), A007088 (binary nonnegative integers).
Cf. A045504.

Programs

  • Mathematica
    t = {}; Do[b = IntegerDigits[Fibonacci[n], 2]; If[b == Reverse[b], AppendTo[t, n]], {n, 0, 1000}]; t (* T. D. Noe, Dec 14 2013 *)
    Select[Range[0,10],PalindromeQ[IntegerDigits[Fibonacci[#],2]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 04 2019 *)

A280105 a(n) = prime(Fibonacci(n)) written in base 2.

Original entry on oeis.org

10, 10, 11, 101, 1011, 10011, 101001, 1001001, 10001011, 100000001, 111001101, 1100111011, 10110111111, 101000011111, 1000110001101, 1111001110001, 11010010011101, 101101001110111, 1001101101100011, 10000100101011011, 11100010001110111, 110000000001001111
Offset: 1

Views

Author

Vincenzo Librandi, Dec 27 2016

Keywords

Crossrefs

Programs

  • Magma
    [Seqint(Intseq(NthPrime(Fibonacci(n)), 2)): n in [1..25]];
  • Mathematica
    Table[FromDigits[IntegerDigits[Prime[Fibonacci[n]], 2]], {n, 1, 30}]

A287015 Lucas numbers written in base 2.

Original entry on oeis.org

10, 1, 11, 100, 111, 1011, 10010, 11101, 101111, 1001100, 1111011, 11000111, 101000010, 1000001001, 1101001011, 10101010100, 100010011111, 110111110011, 1011010010010, 10010010000101, 11101100010111, 101111110011100, 1001101010110011, 1111101001001111
Offset: 0

Views

Author

Vincenzo Librandi, May 23 2017

Keywords

Crossrefs

Programs

  • Magma
    [Seqint(Intseq(Lucas(n), 2)): n in [0..30]];
  • Mathematica
    Table[FromDigits[IntegerDigits[LucasL[n], 2]], {n, 0, 30}]

Formula

a(n) = A007088(A000032(n)).
Previous Showing 21-25 of 25 results.