cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 54 results. Next

A004722 Delete all digits 3 from the terms of the sequence of nonnegative integers.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 14, 15, 16, 17, 18, 19, 20, 21, 22, 2, 24, 25, 26, 27, 28, 29, 0, 1, 2, 4, 5, 6, 7, 8, 9, 40, 41, 42, 4, 44, 45, 46, 47, 48, 49, 50, 51, 52, 5, 54, 55, 56, 57, 58, 59, 60, 61, 62, 6, 64, 65, 66, 67, 68, 69, 70, 71, 72, 7, 74, 75, 76
Offset: 0

Views

Author

Keywords

Comments

Very similar to A004178, except that 3-repdigits (A002277) are completely removed from the sequence, whereas A004178 has 0's in their place. It is thus guaranteed that a(n) = n only when n < 3. - Alonso del Arte, Oct 18 2012

Crossrefs

Programs

  • MATLAB
    m=1;
    for u=0:1000
        v=dec2base(u,10)-'0'; v = v(v~=3);
        if length(v)>0;sol(m)=(str2num(strrep(num2str(v), ' ', ''))); m=m+1; end;
    end
    sol % Marius A. Burtea, May 07 2019
    
  • Mathematica
    endAt = 103; Delete[Table[FromDigits[DeleteCases[IntegerDigits[n], 3]], {n, 0, endAt}], Table[{(10^expo - 1)/3 + 1}, {expo, Floor[Log[10, endAt]]}]] (* Alonso del Arte, Apr 29 2019 *)
  • Python
    def A004722(n):
        l = len(str(n))
        m = (10**l-1)//3
        k = n + l - int(n+l < m)
        return 2 if k == m else int(str(k).replace('3','')) # Chai Wah Wu, Apr 20 2021

Formula

a(n) = n for -1 < n < 3;
a(n) = A004178(n + 1) for 2 < n < 32,
a(n) = A004178(n + 2) for 31 < n < 331,
a(n) = A004178(n + 3) for 330 < n < 3330,
a(n) = A004178(n + 4) for 3329 < n < 33329, etc. - Alonso del Arte, Oct 21 2012

Extensions

Sean A. Irvine pointed out erroneous terms in b-file and confirmed correction, Apr 28 2019
Name edited by Felix Fröhlich, Apr 29 2019

A004724 Delete all 5's from the sequence of nonnegative integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 16, 17, 18, 19, 20, 21, 22, 23, 24, 2, 26, 27, 28, 29, 30, 31, 32, 33, 34, 3, 36, 37, 38, 39, 40, 41, 42, 43, 44, 4, 46, 47, 48, 49, 0, 1, 2, 3, 4, 6, 7, 8, 9, 60, 61, 62, 63, 64, 6, 66, 67, 68, 69, 70, 71, 72, 73, 74, 7, 76
Offset: 0

Views

Author

Keywords

Comments

In contrast to the variant A004180 where a(n) = 0 when all the digits of n are 5's, here a number completely disappears in that case, so that subsequent indices are shifted and for n > 4, a(n) is not the result of deleting 5's from n: see formula. - M. F. Hasler, Jan 13 2020

Examples

			From  _M. F. Hasler_, Jan 13 2020: (Start)
After a(4) = 4 comes a(5) = 6, since the number 5 completely disappears.
a(48) = 49 is followed by 0, 1, 2, 3, 4 (i.e., 50, ..., 54 with the initial digit removed) and then a(54) = 6, because 55 disappears completely.
Illustration of the formula: as long as n < 5 (the first number that completely disappears) we have a(n) = A004180(n). Here n has 1 digit but n+1 does not exceed the (single repdigit) 5 (left hand side in the Iverson bracket), so m = 0. From n = 5 on, n+1 > 5, so m = 1.
Then, when n has L(n) = 2 digits, we still have n = 2 - 1 = 1 as long as n+2 <= 55 or n <= 53, but m = 3 for n > 55 - 2 = 53, i.e., from n = 54 on (where the term 55 has disappeared, see above).
Similarly, m = 3 for n > 555 - 3, i.e., from n >= 553 on, etc. (End)
		

Crossrefs

Cf. A004180 (delete digits 5 in n), A052413 (numbers with no digit 5).

Programs

  • MATLAB
    m=1; for u=0:76 v=dec2base(u, 10)-'0'; v = v(v~=5);  if length(v)>0; sol(m)=(str2num(strrep(num2str(v), ' ', ''))); m=m+1; end; end; sol % Marius A. Burtea, Jan 16 2020
    
  • PARI
    apply( {A004724(n,L=logint(n+!n,10)+1)=A004180(n+L-(10^L\9*5-L>=n))}, [0..99])
    A004724_upto(N)={[fromdigits(v)|v<-[[d|d<-digits(n+!n*50),d!=5]|n<-[0..N]],#v]} \\ M. F. Hasler, Jan 13 2020
    
  • Python
    def A004724(n):
        l = len(str(n))
        m = 5*(10**l-1)//9
        k = n + l - int(n+l < m)
        return 4 if k == m else int(str(k).replace('5','')) # Chai Wah Wu, Apr 20 2021

Formula

a(n) = A004180(n + m) where m = L(n) - [ (10^L(n)-1)/9*5 >= n + L(n) ], L(n) = floor(log_10(max(n,1)) + 1), the number of digits of n, and [...] is the Iverson bracket (1 if true, 0 else). - M. F. Hasler, Jan 13 2020

A004723 Delete all 4's from the sequence of nonnegative integers.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 15, 16, 17, 18, 19, 20, 21, 22, 23, 2, 25, 26, 27, 28, 29, 30, 31, 32, 33, 3, 35, 36, 37, 38, 39, 0, 1, 2, 3, 5, 6, 7, 8, 9, 50, 51, 52, 53, 5, 55, 56, 57, 58, 59, 60, 61, 62, 63, 6, 65, 66, 67, 68, 69, 70, 71, 72, 73, 7, 75
Offset: 0

Views

Author

Keywords

Comments

Differs from A004179 where A004179(4) = A004179(44) = A004179(444) = ... = 0. - Michel Marcus, May 17 2019

Crossrefs

Programs

  • MATLAB
    m=1;
    for u=0:150
    v=dec2base(u, 10)-'0'; v = v(v~=4);
      if length(v)>0;sol(m)=(str2num(strrep(num2str(v), ' ', ''))); m=m+1; end;
    end;
    sol % Marius A. Burtea, May 17 2019
    
  • Maple
    f:= proc(n) local L,i;
      L:= subs(4=NULL, convert(n,base,10));
      if L = [] then return NULL fi;
      add(L[i]*10^(i-1),i=1..nops(L))
    end proc:
    map(f, [$0..100]); # Robert Israel, May 17 2019
  • Python
    def A004723(n):
        l = len(str(n))
        m = 4*(10**l-1)//9
        k = n + l - int(n+l < m)
        return 3 if k == m else int(str(k).replace('4','')) # Chai Wah Wu, Apr 20 2021

A004725 Delete all 6's from the sequence of nonnegative integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 17, 18, 19, 20, 21, 22, 23, 24, 25, 2, 27, 28, 29, 30, 31, 32, 33, 34, 35, 3, 37, 38, 39, 40, 41, 42, 43, 44, 45, 4, 47, 48, 49, 50, 51, 52, 53, 54, 55, 5, 57, 58, 59, 0, 1, 2, 3, 4, 5, 7, 8, 9, 70, 71, 72, 73, 74, 75, 7
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    d6[n_]:=Module[{c=DeleteCases[IntegerDigits[n],6]},If[c=={},Nothing, FromDigits[ c]]]; Array[d6,80,0] (* Harvey P. Dale, Oct 09 2017 *)
  • Python
    def A004725(n):
        l = len(str(n))
        m = 2*(10**l-1)//3
        k = n + l - int(n+l < m)
        return 5 if k == m else int(str(k).replace('6','')) # Chai Wah Wu, Apr 20 2021

A004726 Delete all 7's from the sequence of nonnegative integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 18, 19, 20, 21, 22, 23, 24, 25, 26, 2, 28, 29, 30, 31, 32, 33, 34, 35, 36, 3, 38, 39, 40, 41, 42, 43, 44, 45, 46, 4, 48, 49, 50, 51, 52, 53, 54, 55, 56, 5, 58, 59, 60, 61, 62, 63, 64, 65, 66, 6, 68, 69, 0, 1, 2
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Delete[Table[FromDigits[IntegerDigits[n]/.(7->Nothing)],{n,0,80}],8] (* Harvey P. Dale, Jul 13 2025 *)
  • Python
    def A004726(n):
        l = len(str(n))
        m = 7*(10**l-1)//9
        k = n + l - int(n+l < m)
        return 6 if k == m else int(str(k).replace('7','')) # Chai Wah Wu, Apr 20 2021

A004727 Delete all 8's from the sequence of nonnegative integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1, 19, 20, 21, 22, 23, 24, 25, 26, 27, 2, 29, 30, 31, 32, 33, 34, 35, 36, 37, 3, 39, 40, 41, 42, 43, 44, 45, 46, 47, 4, 49, 50, 51, 52, 53, 54, 55, 56, 57, 5, 59, 60, 61, 62, 63, 64, 65, 66, 67, 6, 69, 70, 71
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Python
    def A004727(n):
        l = len(str(n))
        m = 8*(10**l-1)//9
        k = n + l - int(n+l < m)
        return 7 if k == m else int(str(k).replace('8','')) # Chai Wah Wu, Apr 20 2021

A243063 Numbers generated by a Fibonacci-like sequence in which zeros are suppressed.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 61, 438, 499, 937, 1436, 2373, 389, 2762, 3151, 5913, 964, 6877, 7841, 14718, 22559, 37277, 59836, 97113, 156949, 25462, 182411, 27873, 21284, 49157, 7441, 56598, 6439, 6337, 12776, 19113, 31889, 512, 3241
Offset: 1

Views

Author

Anthony Sand, Jun 09 2014

Keywords

Comments

Let x(1) = 1, x(2) = 1, then begin the sequence x(i) = no-zero(x(i-2) + x(i-1)), where the function no-zero(n) removes all zero digits from n.
The sequence behaves like a standard Fibonacci sequence until step 15, where x = no-zero(233 + 377) = no-zero(610) = 61. At step 16, x = 377 + 61 = 438. The sequence then proceeds until step 927, where x = no-zero(224 + 377) = no-zero(601) = 61. Therefore at step 928, x = 377 + 61 = 438 and the sequence repeats.

Examples

			x(3) = x(1) + x(2) = 1 + 1 = 2.
x(4) = x(2) + x(3) = 1 + 2 = 3.
x(15) = no-zero(x(13) + x(14)) = no-zero(233 + 377) = no-zero(610) = 61.
x(16) = 377 + 61 = 438.
		

Crossrefs

Programs

  • Maple
    noz:=proc(n) local a,t1,i,j; a:=0; t1:=convert(n,base,10); for i from 1 to nops(t1) do j:=t1[nops(t1)+1-i]; if j <> 0 then a := 10*a+j; fi; od: a; end; # A004719
    t1:=[1,1]; for n from 3 to 100 do t1:=[op(t1),noz(t1[n-1]+t1[n-2])]; od: t1; # N. J. A. Sloane, Jun 11 2014
  • Mathematica
    Nest[Append[#, FromDigits@ DeleteCases[IntegerDigits[Total@ #[[-2 ;; -1]] ], ?(# == 0 &)]] &, {1, 1}, 45] (* _Michael De Vlieger, Jun 27 2020 *)
    nxt[{a_,b_}]:={b,FromDigits[DeleteCases[IntegerDigits[a+b],0]]}; NestList[nxt,{1,1},50][[All,1]] (* Harvey P. Dale, Sep 12 2022 *)

Formula

x(i) = no-zero(x(i-2) + x(i-1)). For example, no-zero(233 + 377) = no-zero(610) = 61.

A004728 Delete all 9's from the sequence of nonnegative integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1, 20, 21, 22, 23, 24, 25, 26, 27, 28, 2, 30, 31, 32, 33, 34, 35, 36, 37, 38, 3, 40, 41, 42, 43, 44, 45, 46, 47, 48, 4, 50, 51, 52, 53, 54, 55, 56, 57, 58, 5, 60, 61, 62, 63, 64, 65, 66, 67, 68, 6, 70, 71
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0},Table[FromDigits[IntegerDigits[n]/.(9->Nothing)],{n,90}]/.(0-> Nothing)] (* Harvey P. Dale, Aug 10 2019 *)
  • Python
    def A004728(n):
        l = len(str(n))
        m = 10**l-1
        k = n + l - int(n+l < m)
        return 8 if k == m else int(str(k).replace('9','')) # Chai Wah Wu, Apr 20 2021

A101594 Numbers with exactly two distinct decimal digits, neither of which is 0.

Original entry on oeis.org

12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 84, 85, 86, 87, 89, 91, 92, 93, 94, 95, 96, 97, 98, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 131
Offset: 1

Views

Author

David Wasserman, Dec 07 2004

Keywords

Comments

First differs from A125290 at a(83) = 131 != 123 = A101594(83). - Michael S. Branicky, Dec 13 2021

Crossrefs

Programs

  • Haskell
    a101594 n = a101594_list !! (n-1)
    a101594_list = filter ((== 2) . a043537) a052382_list
    -- Reinhard Zumkeller, Jun 18 2013
    
  • Mathematica
    Select[Range[200], FreeQ[#, 0] && Length[Union[#]] == 2 & [IntegerDigits[#]] &] (* Paolo Xausa, May 06 2024 *)
  • Python
    def ok(n): s = set(str(n)); return len(s) == 2 and "0" not in s
    print([k for k in range(132) if ok(k)]) # Michael S. Branicky, Dec 13 2021

Formula

A168046(a(n)) * A043537(A004719(a(n))) = 2. - Reinhard Zumkeller, Jun 18 2013

A125289 Numbers with unique nonzero digit in decimal representation.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 22, 30, 33, 40, 44, 50, 55, 60, 66, 70, 77, 80, 88, 90, 99, 100, 101, 110, 111, 200, 202, 220, 222, 300, 303, 330, 333, 400, 404, 440, 444, 500, 505, 550, 555, 600, 606, 660, 666, 700, 707, 770, 777, 800, 808, 880, 888, 900, 909
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 26 2006

Keywords

Comments

A043537(a(n)) <= 2.
A043537(A004719(a(n))) = 1: A004719(a(n)) is a repdigit number, see A010785;
also numbers having exactly one partition into digit values of their decimal representations: A061827(a(n))=1.

Crossrefs

Cf. A125292.

Programs

  • PARI
    is(n, base=10) = #Set(select(sign, digits(n, base)))==1 \\ Rémy Sigrist, Mar 28 2020
    
  • PARI
    a(n,base=10) = { for (w=0, oo, if (n<=(base-1)*2^w, my (d=1+(n-1)\2^w, k=2^w+(n-1)%(2^w)); return (d*fromdigits(binary(k), base)), n -= (base-1)*2^w)) } \\ Rémy Sigrist, Mar 28 2020
  • Python
    A125289_list = [n for n in range(10**4) if len(set(str(n))-{'0'})==1]
    # Chai Wah Wu, Jan 04 2015
    
  • Python
    from itertools import count, product, islice
    def A125289_gen(): # generator of terms
        yield from (int(d+''.join(m)) for l in count(0) for d in '123456789' for m in product('0'+d,repeat=l))
    A125289_list = list(islice(A125289_gen(),20)) # Chai Wah Wu, Mar 14 2025
    
Previous Showing 21-30 of 54 results. Next