cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A160798 a(n) = A160797(n+2)/3.

Original entry on oeis.org

1, 7, 1, 7, 3, 21, 1, 7, 3, 21, 3, 21, 9, 63, 1, 7, 3, 21, 3, 21, 9, 63, 3, 21, 9, 63, 9, 63, 27, 189, 1, 7, 3, 21, 3, 21, 9, 63, 3, 21, 9, 63, 9, 63, 27, 189, 3, 21, 9, 63, 9, 63, 27, 189, 9, 63, 27, 189, 27, 189, 81, 567, 1, 7, 3, 21, 3, 21, 9, 63, 3, 21, 9, 63
Offset: 1

Views

Author

Omar E. Pol, Jun 13 2009

Keywords

Comments

From Omar E. Pol, Mar 15 2020: (Start)
It appears that the right border of triangle gives A005032.
It appears that the sum of n-th row equals A004171(n). (End)
Apparently A160417 shifted once left. - R. J. Mathar, May 30 2025

Examples

			From _Omar E. Pol_, Mar 15 2020: (Start)
Written as an irregular triangle in which row lengths are the even powers of 2, the sequence begins:
1, 7;
1, 7, 3, 21;
1, 7, 3, 21, 3, 21, 9, 63;
1, 7, 3, 21, 3, 21, 9, 63, 3, 21, 9, 63, 9, 63, 27, 189;
1, 7, 3, 21, 3, 21, 9, 63, 3, 21, 9, 63, 9, 63, 27, 189, 3, 21, 9, 63, 9, 63, ...
(End)
		

Crossrefs

Extensions

More terms from Jinyuan Wang, Mar 15 2020

A166481 a(n) = 3*a(n-2) for n > 2; a(1) = 1; a(2) = 7.

Original entry on oeis.org

1, 7, 3, 21, 9, 63, 27, 189, 81, 567, 243, 1701, 729, 5103, 2187, 15309, 6561, 45927, 19683, 137781, 59049, 413343, 177147, 1240029, 531441, 3720087, 1594323, 11160261, 4782969, 33480783, 14348907, 100442349, 43046721, 301327047
Offset: 1

Views

Author

Klaus Brockhaus, Oct 14 2009

Keywords

Comments

Interleaving of A000244 and A005032.
Seventh binomial transform is A153598.

Crossrefs

Cf. A000244 (powers of 3), A005032 (7*3^n), A153598.

Programs

  • Magma
    [ n le 2 select 6*n-5 else 3*Self(n-2): n in [1..34] ];
    
  • Mathematica
    LinearRecurrence[{0,3},{1,7},50] (* or *) Flatten[NestList[3#&,{1,7},20]] (* Harvey P. Dale, Sep 24 2015 *)
  • SageMath
    def A166481(n): return 3^(n/2)*(sqrt(3)*(n%2) + 7*((n+1)%2))/3
    [A166481(n) for n in range(1,41)] # G. C. Greubel, Aug 02 2024

Formula

a(n) = (5 + 2*(-1)^n)*3^((2*n - 5 + (-1)^n)/4).
G.f.: x*(1+7*x)/(1-3*x^2).
E.g.f.: (1/3)*(-7 + 7*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)). - G. C. Greubel, Aug 02 2024

A258597 a(n) = 13*3^n.

Original entry on oeis.org

13, 39, 117, 351, 1053, 3159, 9477, 28431, 85293, 255879, 767637, 2302911, 6908733, 20726199, 62178597, 186535791, 559607373, 1678822119, 5036466357, 15109399071, 45328197213, 135984591639, 407953774917, 1223861324751, 3671583974253, 11014751922759
Offset: 0

Views

Author

Vincenzo Librandi, Jun 05 2015

Keywords

Comments

Also maximum leaf number of the (n+3)-Apollonian network for n >= 0. - Eric W. Weisstein, Jan 17 2018

Crossrefs

Cf. k*3^n: A000244 (k=1,3,9), A008776 (k=2,6), A003946 (k=4), A005030 (k=5), A005032 (k=7), A005051 (k=8), A005052 (k=10), A120354 (k=11), A003946 (k=12), this sequence (k=13), A258598 (k=17), A176413 (k=19).

Programs

  • Magma
    [13*3^n: n in [0..30]];
  • Mathematica
    Table[13 3^n, {n, 0, 30}]
    13 3^Range[0, 20] (* Eric W. Weisstein, Jan 17 2018 *)
    LinearRecurrence[{3}, {13}, 20] (* Eric W. Weisstein, Jan 17 2018 *)
    CoefficientList[Series[13/(1 - 3 x), {x, 0, 20}], x] (* Eric W. Weisstein, Jan 17 2018 *)

Formula

G.f.: 13/(1-3*x).
a(n) = 3*a(n-1).
a(n) = 13*A000244(n).
E.g.f.: 13*exp(3*x). - Elmo R. Oliveira, Aug 16 2024
Previous Showing 11-13 of 13 results.