cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 79 results. Next

A206738 G.f.: 1/(1 - x^2/(1 - x^5/(1 - x^8/(1 - x^11/(1 - x^14/(1 - x^17/(1 -...- x^(3*n-1)/(1 -...)))))))), a continued fraction.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 3, 2, 4, 4, 6, 7, 9, 11, 14, 18, 22, 29, 35, 46, 56, 73, 90, 116, 144, 184, 231, 292, 370, 465, 591, 742, 942, 1185, 1502, 1893, 2395, 3023, 3819, 4826, 6093, 7702, 9724, 12290, 15519, 19611, 24767, 31294, 39527, 49937, 63082
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2012

Keywords

Comments

We have the simple continued fraction expansions (A(x) is the sequence o.g.f.): A(1/n) = [1; n^2 - 2, 1, n^3 - 2, 1, n^5 - 2, 1, n^6 - 2, 1, n^8 - 2, 1, n^9 - 2, 1, n^11 - 2, 1, n^12 - 2, 1, ...] for n >= 2 and A(-1/n) = [ 1, n^2 - 1, n^3 - 1, 1, n^5 - 1, n^6 - 1, 1, n^8 - 1, n^9 - 1, 1, n^11 - 1, n^12 - 1, 1, ...] for n >= 2. Cf. A005169, A111317 and A143951. - Peter Bala, Dec 15 2015

Examples

			G.f.: A(x) = 1 + x^2 + x^4 + x^6 + x^7 + x^8 + 2*x^9 + x^10 + 3*x^11 + ...
Simple continued fraction expansions: A(1/2) = 1.34788543155288690684 ... = [1; 2, 1, 6, 1, 30, 1, 62, 1, 254, 1, 510, 1, 2046, 1, 4094, 1, ...] and A(-1/2) = 1.3199498363818812865 ... = [1; 3, 7, 1, 31, 63, 1, 255, 511, 1, 2047, 4095, 1, ...]. - _Peter Bala_, Dec 15 2015
		

Crossrefs

Programs

  • Maple
    N:= 100:
    C:= [0,[1,1],seq([-x^i,1],i=2..N,3)]:
    S:= series(numtheory:-cfrac(C),x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Feb 18 2024
  • Mathematica
    nmax = 60; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(3*Range[nmax + 1]-1)]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
  • PARI
    {a(n)=local(CF=1+x*O(x^n),M=sqrtint(n+1)); for(k=0, M, CF=1/(1-x^(3*M-3*k+2)*CF)); polcoeff(CF, n, x)}
    for(n=0,55,print1(a(n),", "))

Formula

a(n) ~ c * d^n, where d = 1.26326802855134275222... and c = 0.16506173508242936... - Vaclav Kotesovec, Aug 25 2017
From Peter Bala, Jul 03 2019: (Start)
O.g.f. as a ratio of q series: N(q)/D(q), where N(q) = Sum_{n >= 0} (-1)^n*q^(3*n^2+2*n)/((1-q^3)*(1-q^6)*...*(1-q^(3*n))) and D(q) = Sum_{n >= 0} (-1)^n*q^(3*n^2-n)/((1-q^3)*(1-q^6)*...*(1-q^(3*n))). Cf. A143951, A224704 and A206737.
D(q) has a simple real zero at x = 0.79159764784576529644 .... The constants c and d quoted in the above asymptotic approximation are given by d = 1/x and c = - N(x)/(x*D'(x)), where the prime indicates differentiation w.r.t. q. (End)

A238871 Number of weakly unimodal compositions of n with absolute difference of successive parts <= 1.

Original entry on oeis.org

1, 1, 2, 4, 6, 10, 14, 21, 27, 40, 52, 70, 92, 124, 156, 206, 264, 335, 425, 539, 673, 847, 1052, 1300, 1611, 1990, 2433, 2977, 3638, 4420, 5367, 6496, 7829, 9439, 11341, 13590, 16270, 19425, 23135, 27525, 32697, 38745, 45844, 54168, 63875, 75247, 88493, 103892
Offset: 0

Views

Author

Joerg Arndt, Mar 21 2014

Keywords

Examples

			The a(8) = 27 such compositions are:
01:  [ 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 1 2 ]
03:  [ 1 1 1 1 1 2 1 ]
04:  [ 1 1 1 1 2 1 1 ]
05:  [ 1 1 1 1 2 2 ]
06:  [ 1 1 1 2 1 1 1 ]
07:  [ 1 1 1 2 2 1 ]
08:  [ 1 1 1 2 3 ]
09:  [ 1 1 2 1 1 1 1 ]
10:  [ 1 1 2 2 1 1 ]
11:  [ 1 1 2 2 2 ]
12:  [ 1 2 1 1 1 1 1 ]
13:  [ 1 2 2 1 1 1 ]
14:  [ 1 2 2 2 1 ]
15:  [ 1 2 2 3 ]
16:  [ 1 2 3 2 ]
17:  [ 2 1 1 1 1 1 1 ]
18:  [ 2 2 1 1 1 1 ]
19:  [ 2 2 2 1 1 ]
20:  [ 2 2 2 2 ]
21:  [ 2 3 2 1 ]
22:  [ 2 3 3 ]
23:  [ 3 2 1 1 1 ]
24:  [ 3 2 2 1 ]
25:  [ 3 3 2 ]
26:  [ 4 4 ]
27:  [ 8 ]
		

Crossrefs

A239928 Expansion of F(x^2, x) where F(x,y) is the g.f. of A239927.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 1, 1, 4, 3, 2, 5, 6, 4, 6, 10, 8, 9, 15, 15, 15, 22, 26, 26, 33, 43, 45, 52, 69, 76, 85, 109, 127, 141, 173, 209, 235, 278, 340, 390, 452, 550, 643, 742, 890, 1054, 1221, 1445, 1720, 2007, 2356, 2803, 3291, 3853, 4568, 5385, 6309, 7450, 8800, 10330, 12164, 14372, 16905, 19879
Offset: 0

Views

Author

Joerg Arndt, Mar 29 2014

Keywords

Comments

What does this sequence count?

Crossrefs

Cf. A000108 (F(1, x)), A143951 (F(x, 1)), A005169 (F(x, x), with interlaced zeros), A227310 (F(x, x^2)).

Programs

  • PARI
    N=66; x='x+O('x^N);
    F(x, y, d=0)=if (d>N, 1, 1 / (1-x*y * F(x, x^2*y, d+1) ) );
    Vec( F(x^2, x) )

Formula

G.f.: 1/(1 - x^3/(1 - x^7/(1 - x^11/(1 - x^15/(1 - x^19/(1 - x^23/( ... ))))))).

A286933 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - k*x/(1 - k*x^2/(1 - k*x^3/(1 - k*x^4/(1 - k*x^5/(1 - ...)))))).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 2, 0, 1, 4, 9, 12, 3, 0, 1, 5, 16, 36, 32, 5, 0, 1, 6, 25, 80, 135, 88, 9, 0, 1, 7, 36, 150, 384, 513, 248, 15, 0, 1, 8, 49, 252, 875, 1856, 1971, 688, 26, 0, 1, 9, 64, 392, 1728, 5125, 9024, 7533, 1920, 45, 0, 1, 10, 81, 576, 3087, 11880, 30125, 43776, 28836, 5360, 78, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, May 16 2017

Keywords

Examples

			G.f. of column k: A(x) = 1 + k*x + k^2*x^2 + k^2*(k + 1)*x^3 + k^3*(k + 2)*x^4 + k^3*(k^2 + 3*k + 1)*x^5 + ...
Square array begins:
  1,  1,   1,    1,     1,     1,  ...
  0,  1,   2,    3,     4,     5,  ...
  0,  1,   4,    9,    16,    25,  ...
  0,  2,  12,   36,    80,   150,  ...
  0,  3,  32,  135,   384,   875,  ...
  0,  5,  88,  513,  1856,  5125,  ...
		

Crossrefs

Columns k=0..1 give: A000007, A005169.
Rows n=0..3 give: A000012, A001477, A000290, A011379.
Main diagonal gives A291274.
Cf. A286932.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-k x^i, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: 1/(1 - k*x/(1 - k*x^2/(1 - k*x^3/(1 - k*x^4/(1 - k*x^5/(1 - ...)))))), a continued fraction.
G.f. of column k (for k > 0): (Sum_{j>=0} (-k)^j*x^(j*(j+1))/Product_{i=1..j} (1 - x^i)) / (Sum_{j>=0} (-k)^j*x^(j^2)/Product_{i=1..j} (1 - x^i)).

A288005 Number of symmetrical fountains of n coins.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 3, 5, 4, 9, 8, 15, 14, 26, 24, 46, 42, 79, 73, 137, 128, 239, 221, 414, 385, 719, 668, 1249, 1161, 2167, 2016, 3762, 3499, 6531, 6075, 11336, 10546, 19676, 18306, 34153, 31775, 59279, 55155, 102890, 95733, 178587, 166165, 309968, 288412
Offset: 0

Views

Author

Seiichi Manyama, Sep 01 2017

Keywords

Examples

			a(7) = 5:
.. O O O ....... O O ....... O ... O ......... O ........................
. O O O O ... O O O O O ... O O O O O ... O O O O O O ... O O O O O O O .
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n<0, 0, `if`(n=0,
          `if`(p<0 and i=1, 1, 0), `if`(n=i or n=i+p, 1, 0)+
          `if`(i<1 and p=1, 0, b(n-2*i, i, -p))+b(n-2*(i+p), i+p, -p)))
        end:
    a:= n-> `if`(n=0, 1, b(n, 0, 1)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Sep 02 2017
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[n < 0, 0, If[n == 0, If[p < 0 && i == 1, 1, 0], If[n == i || n == i + p, 1, 0] + If[i < 1 && p == 1, 0, b[n - 2i, i, -p]] + b[n - 2(i + p), i + p, -p]]];
    a[n_] := If[n == 0, 1, b[n, 0, 1]];
    a /@ Range[0, 60] (* Jean-François Alcover, Nov 14 2020, after Alois P. Heinz *)

Extensions

a(33)-a(48) from Alois P. Heinz, Sep 02 2017

A288006 Number of distinct fountains of n coins.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 6, 10, 15, 27, 43, 75, 124, 216, 364, 634, 1081, 1879, 3229, 5609, 9680, 16809, 29077, 50482, 87452, 151811, 263201, 456871, 792468, 1375530, 2386580, 4142425, 7188332, 12476743, 21652780, 37582311, 65225643, 113210394, 196487131, 341036576
Offset: 0

Views

Author

Seiichi Manyama, Sep 01 2017

Keywords

Comments

We regard fountains as equivalent if one can be transformed into another by symmetries.

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1,
          add(g(n-j, j), j=1..min(i+1, n)))
        end:
    b:= proc(n, i, p) option remember; `if`(n<0, 0, `if`(n=0,
          `if`(p<0 and i=1, 1, 0), `if`(n=i or n=i+p, 1, 0)+
          `if`(i<1 and p=1, 0, b(n-2*i, i, -p))+b(n-2*(i+p), i+p, -p)))
        end:
    a:= n-> (g(n, 0)+`if`(n=0, 1, b(n, 0, 1)))/2:
    seq(a(n), n=0..60);  # Alois P. Heinz, Sep 02 2017
  • Mathematica
    g[n_, i_] := g[n, i] = If[n == 0, 1,
         Sum[g[n-j, j], {j, 1, Min[i+1, n]}]];
    b[n_, i_, p_] := b[n, i, p] = If[n < 0, 0, If[n == 0,
         If[p < 0 && i == 1, 1, 0], If[n == i || n == i+p, 1, 0] +
         If[i < 1 && p == 1, 0, b[n - 2i, i, -p]] + b[n - 2(i+p), i+p, -p]]];
    a[n_] := (g[n, 0] + If[n == 0, 1, b[n, 0, 1]])/2;
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Aug 01 2021, after Alois P. Heinz *)

Formula

a(n) = (A005169(n) + A288005(n)) / 2.

Extensions

a(33)-a(39) from Alois P. Heinz, Sep 02 2017

A291146 Expansion of 1/(1 - x/(1 - x^8/(1 - x^27/(1 - x^64/(1 - x^125/(1 - x^216/(1 - ... - x^(n^3)/(1 - ...)))))))), a continued fraction.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 29, 36, 44, 53, 64, 78, 96, 119, 148, 184, 228, 281, 345, 423, 519, 639, 788, 973, 1202, 1484, 1830, 2254, 2774, 3415, 4206, 5183, 6390, 7880, 9717, 11979, 14762, 18188, 22408, 27609, 34022, 41931
Offset: 0

Views

Author

Seiichi Manyama, Aug 18 2017

Keywords

Examples

			G.f. = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + 2*x^9 + 3*x^10 + 4*x^11 + 5*x^12 + ...
		

Crossrefs

Column k=3 of A290771.

A291878 Triangle read by rows: T(n,k) = number of fountains of n coins and height k.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 1, 4, 0, 1, 7, 1, 0, 1, 12, 2, 0, 1, 20, 5, 0, 1, 33, 11, 0, 1, 54, 22, 1, 0, 1, 88, 44, 2, 0, 1, 143, 85, 5, 0, 1, 232, 161, 12, 0, 1, 376, 302, 25, 0, 1, 609, 559, 52, 1, 0, 1, 986, 1026, 105, 2, 0, 1, 1596, 1870, 207, 5, 0, 1
Offset: 0

Views

Author

Seiichi Manyama, Sep 05 2017

Keywords

Comments

Same as A187080, with trailing zeros omitted.

Examples

			T(6, 1) = 1;
. O O O O O O .
-------------------------------------------------------
T(6, 2) = 7;
.. O O ......... O O ..... O . O ..
. O O O O ... O O O O ... O O O O .
.......................................................
.. O ............. O ............. O ............. O ..
. O O O O O ... O O O O O ... O O O O O ... O O O O O .
-------------------------------------------------------
T(6, 3) = 1;
... O ...
.. O O ..
. O O O .
-------------------------------------------------------
First few rows are:
  1;
  0,  1;
  0,  1;
  0,  1,   1;
  0,  1,   2;
  0,  1,   4;
  0,  1,   7,   1;
  0,  1,  12,   2;
  0,  1,  20,   5;
  0,  1,  33,  11;
  0,  1,  54,  22,  1;
  0,  1,  88,  44,  2;
		

Crossrefs

Row sums give A005169.
Columns 0-2 give A000007, A000012, A000071.

Programs

  • Maple
    b:= proc(n, i, h) option remember; `if`(n=0, x^h,
          add(b(n-j, j, max(h, j)), j=1..min(i+1, n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..30);  # Alois P. Heinz, Sep 05 2017
  • Mathematica
    b[n_, i_, h_] := b[n, i, h] = If[n == 0, x^h, Sum[b[n - j, j, Max[h, j]], {j, 1, Min[i + 1, n]}]];
    T[n_] := Table[Coefficient[#, x, i], {i, 0, Exponent[#, x]}]& @ b[n, 0, 0];
    Table[T[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, May 31 2019, after Alois P. Heinz *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import Symbol, Poly, flatten
    x=Symbol('x')
    @cacheit
    def b(n, i, h): return x**h if n==0 else sum([b(n - j, j, max(h, j)) for j in range(1, min(i + 1, n) + 1)])
    def T(n): return 1 if n==0 else Poly(b(n, 0, 0)).all_coeffs()[::-1]
    print(flatten(map(T, range(31)))) # Indranil Ghosh, Sep 06 2017

A295944 Expansion of e.g.f. 1/(1 - x/(1 - x^2/(2 - x^3/(3 - x^4/(4 - x^5/(5 - x^6/(6 - x^7/(7 - ...)))))))), a continued fraction.

Original entry on oeis.org

1, 1, 2, 9, 48, 330, 2760, 26670, 295680, 3686760, 51080400, 778516200, 12944131200, 233156523600, 4522777459200, 94000269963600, 2083918752115200, 49086474041404800, 1224240044169542400, 32229413145084355200, 893129953569780326400, 25987602379142314310400, 792175050968260985625600
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 30 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[1/(1 + ContinuedFractionK[-x^k, k, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(n) ~ c * d^n * n!, where d = 1.38558212161941692858602713469062337279193542118277136584639901149123656221... and c = 0.53969028910223464320214486945875671476165137860949073877514057198146... - Vaclav Kotesovec, Sep 24 2020

A005170 Erroneous version of A226999.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 35, 55, 93, 149, 248, 403, 670, 1082
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Previous Showing 61-70 of 79 results. Next