cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 240 results. Next

A318446 Inverse Möbius transform of A005187: a(n) = Sum_{d|n} A005187(d).

Original entry on oeis.org

1, 4, 5, 11, 9, 18, 12, 26, 21, 30, 20, 47, 24, 40, 39, 57, 33, 68, 36, 75, 55, 64, 43, 108, 56, 76, 71, 100, 55, 126, 58, 120, 88, 102, 87, 167, 72, 112, 102, 168, 80, 174, 83, 156, 141, 134, 90, 233, 107, 174, 135, 184, 103, 222, 133, 224, 150, 170, 114, 309, 118, 180, 191, 247, 160, 272, 132, 243, 182, 270, 139, 370, 144
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2018

Keywords

Crossrefs

Cf. also A297111, A300244.

Programs

Formula

a(n) = Sum_{d|n} A005187(d).
a(n) = A005187(n) + A318445(n).
a(n) = A318448(n) + A007429(n).

A318447 a(n) = Sum_{d|n, dA294898(d), where A294898(d) = A005187(d) - sigma(d).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, -2, 0, 3, 2, 0, 0, 1, 0, 2, 3, 7, 0, -8, 2, 9, 3, 4, 0, 2, 0, 0, 7, 14, 5, -10, 0, 15, 9, -2, 0, 9, 0, 12, 7, 18, 0, -22, 3, 18, 14, 16, 0, 6, 9, 1, 15, 24, 0, -24, 0, 25, 13, 0, 11, 26, 0, 26, 18, 25, 0, -45, 0, 33, 20, 28, 10, 32, 0, -14, 13, 37, 0, -15, 16, 38, 24, 13, 0, -8, 12, 34, 25, 41, 17, -52, 0
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2018

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n, dA294898(d).
a(n) = A318448(n) - A294898(n).
a(n) = A318445(n) - A211779(n).
a(n) = A296074(n) - A292257(n).

A318448 a(n) = Sum_{d|n} A294898(d), where A294898(d) = A005187(d) - sigma(d).

Original entry on oeis.org

0, 0, 0, 0, 2, -2, 3, 0, 3, 2, 7, -8, 9, 4, 4, 0, 14, -4, 15, -2, 10, 12, 18, -22, 18, 16, 13, 1, 24, -14, 25, 0, 23, 26, 24, -31, 33, 28, 27, -14, 37, -6, 38, 13, 15, 34, 41, -52, 41, 22, 40, 19, 48, -10, 42, -10, 45, 46, 53, -76, 55, 48, 29, 0, 55, 12, 63, 34, 57, 18, 66, -98, 69, 64, 42, 37, 64, 16, 73, -42, 51, 72, 78, -74, 74, 74, 73, 6
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2018

Keywords

Comments

Inverse Möbius transform of A294898.

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A294898(d).
a(n) = A318447(n) + A294898(n).
a(n) = A318446(n) - A007429(n).
a(n) = A296075(n) - A093653(n).

A326138 Numbers k such that A005187(k) < sigma(k) <= 2k, where A005187(k) = 2k - {binary weight of k}.

Original entry on oeis.org

6, 28, 110, 496, 884, 8128, 18632, 85936, 116624, 391612, 15370304, 17619844, 33550336, 73995392, 815634435, 3915380170, 5556840416, 6800695312, 8589869056, 42783299288, 80999455688, 137438691328, 217898810368, 546409576448, 1081071376208, 1661355408388
Offset: 1

Views

Author

Antti Karttunen, Jun 13 2019

Keywords

Comments

Non-abundant numbers whose deficiency (A033879) is less than their binary weight (A000120).
No other terms below < 2^31.

Examples

			815634435 = 3*5*7*11*547*1291 is included as in base-2 (A007088) it is written as 110000100111011001100000000011_2, thus A000120(815634435) = 12, while its nonnegative deficiency (A033879) is 2*815634435 - sigma(815634435) = 6 < 12.
		

Crossrefs

Cf. A000120, A000203, A000396 (subsequence), A005187, A033879, A294898, A295296 (deficiency equals binary weight), A326131, A326132.
Intersection of A263837 and A326133.
Cf. also A087485, A141548, A188597.

Programs

Extensions

a(16)-a(26) from Giovanni Resta, Jun 16 2019

A344769 a(n) = A005187(n) - A011772(n).

Original entry on oeis.org

0, 0, 2, 0, 4, 7, 5, 0, 8, 14, 9, 14, 11, 18, 21, 0, 16, 26, 17, 23, 33, 30, 20, 31, 23, 37, 24, 46, 26, 41, 27, 0, 53, 50, 53, 62, 35, 54, 62, 63, 39, 61, 40, 53, 77, 65, 43, 62, 47, 73, 81, 62, 50, 77, 95, 61, 92, 84, 55, 101, 57, 88, 93, 0, 103, 119, 65, 118, 112, 117, 68, 79, 71, 109, 122, 93, 129, 140, 75, 94, 79, 121
Offset: 1

Views

Author

Antti Karttunen, May 30 2021

Keywords

Crossrefs

Programs

  • PARI
    A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
    A011772(n) = { if(n==1, return(1)); my(f=factor(if(n%2, n, 2*n)), step=vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); forstep(m=step, 2*n, step, if(m*(m-1)/2%n==0, return(m-1)); if(m*(m+1)/2%n==0, return(m))); }; \\ From A011772
    A344769(n) = (A005187(n) - A011772(n));
    
  • Python
    from itertools import combinations
    from math import prod
    from sympy import factorint, divisors
    from sympy.ntheory.modular import crt
    def A344769(n):
        c = 2*n-bin(n).count('1')
        plist = [p**q for p, q in factorint(2*n).items()]
        if len(plist) == 1:
            return int(c+1+(plist[0] % 2 - 2)*n)
        return int(c-min(min(crt([m,2*n//m],[0,-1])[0],crt([2*n//m,m],[0,-1])[0]) for m in (prod(d) for l in range(1,len(plist)//2+1) for d in combinations(plist,l)))) # Chai Wah Wu, Jun 03 2021

Formula

a(n) = A005187(n) - A011772(n).
a(n) = A344765(n) + A294898(n).
a(2^e) = 0, for e >= 0.
If n is an odd prime power, then a(n) = n+1-A000120(n). - Chai Wah Wu, Jun 03 2021

A378756 Dirichlet convolution of A046692 and A005187, where A046692 is the Dirichlet inverse of sigma.

Original entry on oeis.org

1, 0, 0, 0, 2, -2, 3, 0, 3, -6, 7, 0, 9, -8, -6, 0, 14, -6, 15, 0, -5, -16, 18, 0, 4, -20, -2, 0, 24, 14, 25, 0, -12, -30, -15, 0, 33, -32, -18, 0, 37, 12, 38, 0, -12, -38, 41, 0, 14, -8, -30, 0, 48, 4, -33, 0, -30, -50, 53, 0, 55, -52, -27, 0, -38, 26, 63, 0, -33, 32, 66, 0, 69, -68, -6, 0, -38, 38, 73, 0, 7, -76, 78
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2024

Keywords

Crossrefs

Cf. A005187, A046692, A378757 (Dirichlet inverse).
Cf. also A294898.

Programs

  • PARI
    A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
    A046692(n) = { my(f=factor(n)~); prod(i=1, #f, if(1==f[2,i], -(f[1,i]+1), if(2==f[2,i], f[1,i], 0))); };
    A378756(n) = sumdiv(n,d,A046692(d)*A005187(n/d));

Formula

a(n) = Sum_{d|n} A046692(d)*A005187(n/d).

A378757 Dirichlet convolution of sigma and the Dirichlet inverse of A005187 (A346237).

Original entry on oeis.org

1, 0, 0, 0, -2, 2, -3, 0, -3, 6, -7, 0, -9, 8, 6, 0, -14, 6, -15, 0, 5, 16, -18, 0, 0, 20, 2, 0, -24, -22, -25, 0, 12, 30, 27, 4, -33, 32, 18, 0, -37, -24, -38, 0, 24, 38, -41, 0, -5, -16, 30, 0, -48, -16, 61, 0, 30, 50, -53, 24, -55, 52, 45, 0, 74, -54, -63, 0, 33, -100, -66, 0, -69, 68, -18, 0, 80, -74, -73, 0, 2, 76, -78
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2024

Keywords

Crossrefs

Cf. A000203, A005187, A346237, A378756 (Dirichlet inverse).
Cf. also A294898.

Programs

Formula

a(n) = Sum_{d|n} A000203(d)*A346237(n/d).

A101190 G.f.: A(x) = Sum_{n>=0} a(n)/2^A005187(n) * x^n = lim_{n->oo} F(n)^(1/2^n) where F(n) is defined by F(n) = F(n-1)^2 + x^(2^n-1) for n >= 1 with F(0) = 1.

Original entry on oeis.org

1, 1, -1, 5, -53, 127, -677, 2221, -61133, 205563, -1394207, 4852339, -68586849, 243751723, -1741612525, 6265913725, -363239625661, 1323861506899, -9699189175227, 35700526467479, -527987675255931, 1960112858076289, -14606721595781139, 54604708004873403
Offset: 0

Views

Author

Paul D. Hanna, Dec 03 2004

Keywords

Examples

			G.f.: A(x) = 1 + 1/2*x - 1/8*x^2 + 5/16*x^3 - 53/128*x^4 + 127/256*x^5 - 677/1024*x^6 + 2221/2048*x^7 + ... + a(n)/2^A005187(n)*x^n + ...
where 2^A005187(n) is also the denominator of [x^n] 1/sqrt(1-x).
GENERATING METHOD.
We can illustrate the generating method for g.f. A(x) as follows.
Given F(n) = F(n-1)^2 + (2*x)^(2^n-1) for n >= 1 with F(0) = 1,
the first few polynomials generated by F(n) begin
F(0) = 1,
F(1) = F(0)^2 + x^(2^1-1) = 1 + x,
F(2) = F(1)^2 + x^(2^2-1) = 1 + 2*x + x^2 + x^3,
F(3) = F(2)^2 + x^(2^3-1) = 1 + 4*x + 6*x^2 + 6*x^3 + 5*x^4 + 2*x^5 + x^6 + x^7.
...
The 2^n-th roots of F(n) tend to the limit of the g.f.:
F(1)^(1/2^1) = 1 + 1/2*x - 1/8*x^2 + 1/16*x^3 - 5/128*x^4 + 7/256*x^5 - 21/1024*x^6 + 33/2048*x^7 - 429/32768*x^8 + ...
F(2)^(1/2^2) = 1 + 1/2*x - 1/8*x^2 + 5/16*x^3 - 53/128*x^4 + 127/256*x^5 - 677/1024*x^6 + 1965/2048*x^7 - 46797/32768*x^8 + ...
F(3)^(1/2^3) = 1 + 1/2*x - 1/8*x^2 + 5/16*x^3 - 53/128*x^4 + 127/256*x^5 - 677/1024*x^6 + 2221/2048*x^7 - 61133/32768*x^8 + ...
...
The limit of this process equals the g.f. A(x) of this sequence.
Note: the sum of the coefficients in F(n) equals A003095(n):
1, 2 = 1 + 1, 5 = 1 + 2 + 1 + 1, 26 = 1 + 4 + 6 + 6 + 5 + 2 + 1 + 1, ...
The last n coefficients in F(n) read backwards are Catalan numbers (A000108).
POWERS OF A(x).
The coefficients of x^k in the 2^n powers of the g.f. A(x) begin:
A^(2^0) = [1, 1/2, -1/8, 5/16, -53/128, 127/256, -677/1024, 2221/2048, ...],
A^(2^1) = [1, 1, 0, 1/2, -1/2, 1/2, -5/8, 9/8, -2, 53/16, -89/16, 155/16, ...],
A^(2^2) = [1, 2, 1, 1, 0, 0, 0, 1/2, -1, 3/2, -5/2, 9/2, -8, 14, -197/8, 44, ...],
A^(2^3) = [1, 4, 6, 6, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1/2, -2, 5, ...],
A^(2^4) = [1, 8, 28, 60, 94, 116, 114, 94, 69, 44, 26, 14, 5, 2, 1, 1, 0, 0, ...].
		

Crossrefs

Programs

  • PARI
    {a(n) = my(F=1,A,L); if(n==0,A=1,L=ceil(log(n+1)/log(2)); for(k=1,L, F = F^2 + x^(2^k-1) +x*O(x^n)); A = polcoeff(F^(1/2^L),n)); numerator(A)}
    for(n=0,32, print1(a(n),", "))

Formula

G.f. A(x) = ( Sum_{n>=0} A101191(n)/2^A004134(n) * x^n )^2.
G.f. A(x) satisfies A(2*x)^2 = Sum_{n>=0} A101189(n)*(2*x)^n.

Extensions

Entry revised by Paul D. Hanna, Mar 05 2024

A187791 Repeat n+1 times 2^A005187(n).

Original entry on oeis.org

1, 2, 2, 8, 8, 8, 16, 16, 16, 16, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 32768, 32768, 32768, 32768, 32768, 32768, 32768, 32768, 32768, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536
Offset: 0

Views

Author

Paul Curtz, Jan 06 2013

Keywords

Comments

a(n) is the denominators of the antidiagonals of the Lorentz factor, which can be written A001790(n)/A046161(n), and its differences.
1, 1/2, 3/8, 5/16, 35/128, 63/256,... the Lorentz gamma factor,
-1/2, -1/8, -1/16, -5/128, -7/256, -21/1024, ... -A098597(n)/A046161(n+1),from the Lorentz (beta) factor,
3/8, 1/16, 3/128, 3/256, 7/1024, 9/2048,... A161200(n+2)/A046161(n+2),
-5/16, -5/128, -3/256, -5/1024, -5/2048, -45/32768,... A161202(n+3)/A046161(n+4),
35/128, 7/256, 7/1024, 5/2048, 35/32768, 35/65536, ...
-63/256, -21/1024, -9/2048, -45/32768, -35/65536, -63/262144, ... .
Like 1/n and A164555(n)/A027642(n), the Lorentz factor is an autosequence of the second kind. The first column is the signed sequence.
The main diagonal is (-1)^n *A001790(n)/A061549(n).
The Lorentz factor is the differences of (0, followed by A001803(n)) / (1, followed by A046161(n)).
PiSK(n-2)=(0, 0, followed by A001803(n)) / (1, 1, followed by A046161(n)) is also an autosequence of second kind.
Remember that an autosequence of the second kind is a sequence whose inverse binomial transform is the sequence signed, with its main diagonal being the double of its first upper diagonal. - Paul Curtz, Oct 13 2013

Examples

			1,
2,   2,
8,   8,  8,
16, 16, 16, 16.
		

Crossrefs

Cf. A003506.

Programs

  • Mathematica
    Flatten[Table[Denominator[Binomial[2n, n]/4^n], {n, 0, 19}, {n + 1}]] (* Alonso del Arte, Jan 07 2013 *)
    (* Checking with the antidiagonals *) diff = Table[ Differences[ CoefficientList[ Series[1/Sqrt[1 - x], {x, 0, 9}], x], n], {n, 0, 9}]; Table[ diff[[n-k+1,k]] // Denominator,{n,0,10},{k,1,n}] // Flatten (* Jean-François Alcover, Jan 07 2013 *)
    Flatten[Table[2^IntegerExponent[(2*n)!, 2], {n, 0, 19}, {n + 1}]]; (* Jean-François Alcover, Mar 27 2013, after A005187 *)

Formula

Repeat A046161(n) n+1 times. Triangle.

Extensions

New definition by M. F. Hasler

A257130 Where the difference A055938(n) - A005187(n) obtains record values; positions of records in A257126.

Original entry on oeis.org

1, 2, 5, 11, 23, 27, 55, 111, 121, 245, 247, 495, 503, 1007, 2015, 2037, 4077, 8157, 8175, 8179, 16363, 16367, 32735, 65471, 65517, 65519, 131039, 131055, 262111
Offset: 1

Views

Author

Antti Karttunen, Apr 16 2015

Keywords

Comments

The corresponding record values of A257126 are 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, ..., (possibly A062289).

Crossrefs

Previous Showing 61-70 of 240 results. Next