cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 93 results. Next

A161949 Base-12 Armstrong or narcissistic numbers (written in base 10).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 29, 125, 811, 944, 1539, 28733, 193084, 887690, 2536330, 6884751, 17116683, 5145662993, 25022977605, 39989277598, 294245206529, 301149802206, 394317605931, 429649124722, 446779986586
Offset: 1

Views

Author

Joseph Myers, Jun 22 2009

Keywords

Crossrefs

In other bases: A010344 (base 4), A010346 (base 5), A010348 (base 6), A010350 (base 7), A010354 (base 8), A010353 (base 9), A005188 (base 10), A161948 (base 11), A161950 (base 13), A161951 (base 14), A161952 (base 15), A161953 (base 16).

Programs

  • Mathematica
    Select[Range[10^7], # == Total[IntegerDigits[#, 12]^IntegerLength[#, 12]] &] (* Michael De Vlieger, Nov 04 2020 *)

A161953 Base-16 Armstrong or narcissistic numbers (written in base 10).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 342, 371, 520, 584, 645, 1189, 1456, 1457, 1547, 1611, 2240, 2241, 2458, 2729, 2755, 3240, 3689, 3744, 3745, 47314, 79225, 177922, 177954, 368764, 369788, 786656, 786657, 787680, 787681, 811239, 812263, 819424, 819425, 820448, 820449, 909360
Offset: 1

Views

Author

Joseph Myers, Jun 22 2009

Keywords

Comments

Whenever 16|a(n) (n = 22, 26, 33, 41, 43, 47, 49, 51, 53, 61, 116, 149, 157, 196, 198, 204, 206, 243, 247), then a(n+1) = a(n) + 1. Zero also satisfies the definition (n = Sum_{i=1..k} d[i]^k where d[1..k] are the base-16 digits of n), but this sequence only considers positive terms. - M. F. Hasler, Nov 22 2019

Examples

			645 is in the sequence because 645 is 285 in hexadecimal and 2^3 + 8^3 + 5^3 = 645. (The exponent 3 is the number of hexadecimal digits.)
		

Crossrefs

In other bases: A010344 (base 4), A010346 (base 5), A010348 (base 6), A010350 (base 7), A010354 (base 8), A010353 (base 9), A005188 (base 10), A161948 (base 11), A161949 (base 12), A161950 (base 13), A161951 (base 14), A161952 (base 15).

Programs

  • Mathematica
    Select[Range[10^7], # == Total[IntegerDigits[#, 16]^IntegerLength[#, 16]] &] (* Michael De Vlieger, Nov 04 2020 *)
  • PARI
    isok(n) = {my(b=16, d=digits(n, b), e=#d); sum(k=1, #d, d[k]^e) == n;} \\ Michel Marcus, Feb 25 2019
    
  • PARI
    select( is_A161953(n)={n==vecsum([d^#n|d<-n=digits(n,16)])}, [1..10^5]) \\ M. F. Hasler, Nov 22 2019
    
  • Python
    from itertools import islice, combinations_with_replacement
    def A161953_gen(): # generator of terms
        for k in range(1,74):
            a = tuple(i**k for i in range(16))
            yield from (x[0] for x in sorted(filter(lambda x:x[0] > 0 and tuple(int(d,16) for d in sorted(hex(x[0])[2:])) == x[1], \
                              ((sum(map(lambda y:a[y],b)),b) for b in combinations_with_replacement(range(16),k)))))
    A161953_list = list(islice(A161953_gen(),30)) # Chai Wah Wu, Apr 21 2022

Extensions

Terms sorted in increasing order by Pontus von Brömssen, Mar 03 2019

A046761 Largest number that is equal to sum of n-th powers of its digits.

Original entry on oeis.org

1, 9, 1, 407, 9474, 194979, 548834, 14459929, 88593477, 912985153, 4679307774, 94204591914, 1, 564240140138, 28116440335967, 1, 4338281769391371, 35875699062250035, 1, 4929273885928088826, 63105425988599693916
Offset: 0

Views

Author

Keywords

Crossrefs

In other bases: A162218 (base 3), A162221 (base 4), A162224 (base 5), A162227 (base 6), A162230 (base 7), A162233 (base 8), A162236 (base 9).

Extensions

Cross-references edited by Joseph Myers, Jun 28 2009

A161948 Base-11 Armstrong or narcissistic numbers (written in base 10).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 61, 72, 126, 370, 855, 1161, 1216, 1280, 10657, 16841, 16842, 17864, 17865, 36949, 36950, 63684, 66324, 71217, 90120, 99594, 99595, 141424, 157383, 1165098, 1165099, 5611015, 11959539, 46478562, 203821954, 210315331, 397800208, 826098079, 1308772162, 1399714480
Offset: 1

Views

Author

Joseph Myers, Jun 22 2009

Keywords

Comments

From M. F. Hasler, Nov 20 2019: (Start)
Like the other single-digit terms, zero would satisfy the definition (n = Sum_{i=1..k} d[i]^k when d[1..k] are the base 11 digits of n), but here only positive numbers are considered.
Terms a(n+1) = a(n) + 1 (n = 20, 22, 24, 30, 34, 56, 67, 57, 195, ...) correspond to solutions a(n) that are multiples of 11, in which case a(n) + 1 is also a solution. (End)

Examples

			16841 = 11720_11 (= 1*11^4 + 1*11^3 + 7*11^2 + 2*11^1 + 0*11^0) = 1^5 + 1^5 + 7^5 + 2^5 + 0^5. It's easy to see that 16841 + 1 then also satisfies this relation, as for all terms that are multiples of 11. - _M. F. Hasler_, Nov 20 2019
		

Crossrefs

In other bases: A010344 (base 4), A010346 (base 5), A010348 (base 6), A010350 (base 7), A010354 (base 8), A010353 (base 9), A005188 (base 10), A161949 (base 12), A161950 (base 13), A161951 (base 14), A161952 (base 15), A161953 (base 16).

Programs

  • Mathematica
    Select[Range[10^7], # == Total[IntegerDigits[#, 11]^IntegerLength[#, 11]] &] (* Michael De Vlieger, Nov 04 2020 *)
  • PARI
    select( {is_A161948(n)=n==vecsum([d^#n|d<-n=digits(n,11)])}, [0..10^5]) \\ This gives only terms < 10^5, for illustration of is_A161948(). - M. F. Hasler, Nov 20 2019

A161950 Base-13 Armstrong or narcissistic numbers (written in base 10).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 45, 85, 98, 136, 160, 793, 794, 854, 1968, 8194, 62481, 167544, 167545, 294094, 320375, 323612, 325471, 325713, 350131, 365914, 2412003, 4861352, 21710514, 43757311, 43757312, 46299414, 51798568, 52994053
Offset: 1

Views

Author

Joseph Myers, Jun 22 2009

Keywords

Crossrefs

In other bases: A010344 (base 4), A010346 (base 5), A010348 (base 6), A010350 (base 7), A010354 (base 8), A010353 (base 9), A005188 (base 10), A161948 (base 11), A161949 (base 12), A161951 (base 14), A161952 (base 15), A161953 (base 16).

Programs

  • Mathematica
    Select[Range[10^7], # == Total[IntegerDigits[#, 13]^IntegerLength[#, 13]] &] (* Michael De Vlieger, Nov 04 2020 *)

A161951 Base-14 Armstrong or narcissistic numbers (written in base 10).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 244, 793, 282007, 10362564, 1445712420, 29546248981, 164159496751, 342515735622, 359057049845, 216210334578515, 324075236456868, 338527182572746, 338609726265795, 382789516519507, 435198066019184, 526088332647250
Offset: 1

Views

Author

Joseph Myers, Jun 22 2009

Keywords

Comments

Whenever 14|a(n) (n = 36, 46, 75, 77), then a(n+1) = a(n) + 1. Zero also satisfies the definition (n = Sum_{i=1..k} d[i]^k where d[1..k] are the base-14 digits of n), but this sequence only considers positive terms. - M. F. Hasler, Nov 22 2019

Crossrefs

In other bases: A010344 (base 4), A010346 (base 5), A010348 (base 6), A010350 (base 7), A010354 (base 8), A010353 (base 9), A005188 (base 10), A161948 (base 11), A161949 (base 12), A161950 (base 13), A161952 (base 15), A161953 (base 16).

Programs

  • Mathematica
    Select[Range[2 * 10^7], # == Total[IntegerDigits[#, 14]^IntegerLength[#, 14]] &] (* Michael De Vlieger, Nov 04 2020 *)
  • PARI
    select( is_A161951(n)={n==vecsum([d^#n|d<-n=digits(n,14)])}, [1..10^6\3]) \\ M. F. Hasler, Nov 22 2019

A161952 Base-15 Armstrong or narcissistic numbers (written in base 10).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 113, 128, 2755, 3052, 5059, 49074, 49089, 386862, 413951, 517902, 15219156, 18605333, 38009273, 40082196, 40310423, 40868227, 47527794, 100128060, 100128061, 100128188, 104189152, 105464820
Offset: 1

Views

Author

Joseph Myers, Jun 22 2009

Keywords

Comments

Whenever 15|a(n) (n = 32, 36, 40, 86, 100, 135, 143, 194, 197, 201), then a(n+1) = a(n) + 1. Zero also satisfies the definition (n = Sum_{i=1..k} d[i]^k where d[1..k] are the base-15 digits of n), but this sequence only considers positive terms. - M. F. Hasler, Nov 22 2019

Crossrefs

In other bases: A010344 (base 4), A010346 (base 5), A010348 (base 6), A010350 (base 7), A010354 (base 8), A010353 (base 9), A005188 (base 10), A161948 (base 11), A161949 (base 12), A161950 (base 13), A161951 (base 14), A161953 (base 16).

Programs

  • Mathematica
    Select[Range[10^7], # == Total[IntegerDigits[#, 15]^IntegerLength[#, 15]] &] (* Michael De Vlieger, Nov 04 2020 *)
  • PARI
    select( is_A161952(n)={n==vecsum([d^#n|d<-n=digits(n,15)])}, [1..10^5]) \\ M. F. Hasler, Nov 22 2019

Extensions

Terms sorted in increasing order by Pontus von Brömssen, Mar 03 2019

A032799 Numbers k such that k equals the sum of its digits raised to the consecutive powers (1,2,3,...).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 89, 135, 175, 518, 598, 1306, 1676, 2427, 2646798, 12157692622039623539
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

Lemma: The sequence is finite with all terms in the sequence having at most 22 digits. Proof: Let n be an m-digit natural number in the sequence for some m. Then 10^(m-1)<=n and n<=9+9^2+...9^m = 9(9^m-1)/8<(9^(m+1))/8. Thus 10^(m-1)<(9^(m+1))/8. Taking logarithms of both sides and solving yields m<22.97 QED. Note proof is identical to that for A208130. [Francis J. McDonnell, Apr 14 2012]
Sometimes referred to as disarium numbers. - Dumitru Damian, Jul 22 2024

Examples

			89 = 8^1 + 9^2.
175 = 1^1 + 7^2 + 5^3.
2427 = 2^1 + 4^2 + 2^3 + 7^4.
2646798 = 2^1 + 6^2 + 4^3 + 6^4 + 7^5 + 9^6 + 8^7.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 175, p. 55, Ellipses, Paris 2008.
  • Ken Follett, Code to Zero, Dutton, a Penguin Group, NY 2000, p. 84.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 37.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, London, 1986, Entry 175.

Crossrefs

Programs

  • Maple
    N:= 10: # to get solutions of up to N digits
    Branch:= proc(level,sofar)
      option remember;
      local Res, x, x0, lb, ub, y;
      Res:= NULL;
      if perm[level] = 1 then x0:= 1 else x0:= 0 fi;
      for x from x0 to 9 do
        lb:= sofar + b[x,perm[level]] + scmin[level];
        ub:= sofar + b[x,perm[level]] + scmax[level];
        if lb <= 0 and ub >= 0 then
           if level = n then Res:= Res, [x]
           else
             for y in Branch(level+1,sofar+b[x,perm[level]]) do
                Res:= Res, [x, op(y)]
             od
            fi
         fi
       od;
       [Res]
    end:
    count:= 0:
    for n from 1 to N do
      printf("Looking for %d digit solutions\n",n);
      forget(Branch);
      for j from 1 to n do
        for x from 0 to 9 do
          b[x,j]:= x^j - x*10^(n-j)
        od
      od:
      for j from 1 to n do
        smin[j]:= min(seq(b[x,j],x=0..9));
        smax[j]:= max(seq(b[x,j],x=0..9));
      od:
      perm:= sort([seq(smax[j]-smin[j],j=1..n)],`>`,output=permutation):
      for j from 1 to n do
        scmin[j]:= add(smin[perm[i]],i=j+1..n);
        scmax[j]:= add(smax[perm[i]],i=j+1..n);
      end;
      for X in Branch(1,0) do
        xx:= add(X[i]*10^(n-perm[i]),i=1..n);
        count:= count+1;
        A[count]:= xx;
        print(xx);
      od
    od:
    seq(A[i],i=1..count); # Robert Israel, Aug 07 2014
  • Mathematica
    f[n_] := Plus @@ (IntegerDigits[n]^Range[ Floor[ Log[10, n] + 1]]); Select[ Range[10^7], f[ # ] == # &] (* Robert G. Wilson v, May 04 2005 *)
    Join[{0},Select[Range[10^7],Total[IntegerDigits[#]^Range[ IntegerLength[ #]]] == #&]] (* Harvey P. Dale, Oct 13 2015 *)
    sdcpQ[n_]:=n==Inner[Power,IntegerDigits[n],Range[IntegerLength[n]],Plus]; Join[{0},Select[Range[27*10^5],sdcpQ]] (* Harvey P. Dale, May 30 2020 *)
  • PARI
    for(n=1,10^22,d=digits(n);s=sum(i=1,#d,d[i]^i);if(s==n,print1(n,", "))) \\ Derek Orr, Aug 07 2014

Extensions

Corrected by Macsy Zhang (macsy(AT)21cn.com), Feb 17 2002

A014576 Smallest n-digit narcissistic (or Armstrong) number: smallest n-digit number equal to sum of n-th powers of its digits (or 0 if no such number exists).

Original entry on oeis.org

1, 0, 153, 1634, 54748, 548834, 1741725, 24678050, 146511208, 4679307774, 32164049650, 0, 0, 28116440335967, 0, 4338281769391370, 21897142587612075, 0, 1517841543307505039, 63105425988599693916, 128468643043731391252, 0
Offset: 1

Views

Author

Keywords

References

  • M. Gardner, The Magic Numbers of Dr Matrix. Prometheus, Buffalo, NY, 1985, p. 249.
  • C. A. Pickover, Keys to Infinity. New York: W. H. Freeman, pp. 169-170, 1995.

Crossrefs

Programs

  • Mathematica
    (* This program is not suitable for more than 10 terms *) a[n_] := For[k = 10^(n-1), True, k++, If[k > 10^n - 1, Return[0], If[k == Total[ IntegerDigits[k]^IntegerLength[k] ], Return[k] ] ] ]; Table[ Print[an = a[n]]; an, {n, 1, 10}] (* Jean-François Alcover, Oct 15 2013 *)

Extensions

Terms and links added by Patrick De Geest, Oct 1998
Broken links fixed by M. F. Hasler, Feb 12 2013

A256359 Numbers n such that there is at least one base b in which n is a multiple-digit narcissistic number.

Original entry on oeis.org

5, 8, 10, 13, 17, 18, 20, 25, 26, 28, 29, 32, 35, 37, 40, 41, 43, 45, 50, 52, 53, 55, 58, 61, 62, 65, 68, 72, 80, 82, 83, 85, 90, 92, 97, 98, 99, 101, 104, 109, 113, 117, 118, 122, 125, 126, 127, 128, 133, 134, 136, 145, 146, 148, 152, 153, 160, 162
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Mar 26 2015

Keywords

Examples

			a(1) = 5 because this is the first number that is a multiple-digit narcissistic number in at least one base (3).
		

Crossrefs

Cf. A005188.
Cf. A256360, A256361, A256362, A256363, A256364, A256365 (1 to 6 bases).
Cf. A256459 (first occurrences).

Programs

  • Mathematica
    Select[Range@ 162, Function[k, AnyTrue[Range[2, k], Total[#^Length@ #] &@ IntegerDigits[k, #] == k &]]] (* Version 10, or *)
    Select[Range@ 162, Function[k, Total@ Boole[Total[#^Length@ #] &@ IntegerDigits[k, #] == k & /@ Range[2, k]] > 0]] (* Michael De Vlieger, Apr 30 2016 *)
  • PARI
    for(n=3,1000000, k=0; for(z=2,n, y=n; j=0; L=List(); until(y==0, x=y%z; j++; listinsert(L,x,j); while(!((y%z)==0), y--); y=y/z); t=0; for(p=1,j, t+=L[p]^j); if(n==t, k++)); if(k>0, print1(n,", ")))
Previous Showing 21-30 of 93 results. Next