cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 52 results. Next

A006658 Closed meanders with 3 components and 2n bridges.

Original entry on oeis.org

5, 56, 580, 5894, 60312, 624240, 6540510, 69323910, 742518832, 8028001566, 87526544560, 961412790002, 10630964761766, 118257400015312, 1322564193698320, 14863191405246888, 167771227744292160, 1901345329566422790
Offset: 3

Views

Author

Keywords

References

  • S. K. Lando and A. K. Zvonkin "Plane and projective meanders", Séries Formelles et Combinatoire Algébrique. Laboratoire Bordelais de Recherche Informatique, Université Bordeaux I, 1991, pp. 287-303.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A column of triangle A008828.

Programs

Extensions

a(13)-a(20) from Andrew Howroyd, Nov 22 2015

A006661 Number of meanders in which first bridge is 5.

Original entry on oeis.org

3, 3, 7, 11, 28, 57, 155, 353, 1003, 2458, 7214, 18575, 55880, 149183, 457639, 1255933, 3914103, 10978240, 34663182, 98953078, 315884786, 915008430, 2948378068, 8645874055, 28084475514, 83222134020
Offset: 5

Views

Author

Keywords

References

  • S. K. Lando and A. K. Zvonkin "Plane and projective meanders", Séries Formelles et Combinatoire Algébrique. Laboratoire Bordelais de Recherche Informatique, Université Bordeaux I, 1991, pp. 287-303.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Offset corrected terms a(19)-a(30) added, Andrew Howroyd, Dec 15 2015

A006662 Number of meanders in which first bridge is 7.

Original entry on oeis.org

14, 14, 36, 57, 155, 316, 902, 2053, 6059, 14810, 44842, 115009, 355293, 943860, 2963536, 8086913, 25733325, 71725012, 230811370, 654472364, 2126296860, 6115504594, 20032488714, 58309793101
Offset: 7

Views

Author

Keywords

References

  • S. K. Lando and A. K. Zvonkin "Plane and projective meanders", Séries Formelles et Combinatoire Algébrique. Laboratoire Bordelais de Recherche Informatique, Université Bordeaux I, 1991, pp. 287-303.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Offset corrected, terms a(19)-a(30) added, Andrew Howroyd, Dec 15 2015

A085973 Number of ways a loop can cross two parallel roads 2n times.

Original entry on oeis.org

3, 2, 5, 22, 123, 800, 5754, 44514, 363893, 3106288, 27457050, 249768040, 2327398572, 22135606604, 214270565106, 2106151496858, 20982672402385, 211545853142240, 2155553788108702, 22174250217880984, 230075164780356214
Offset: 0

Views

Author

N. J. A. Sloane and Jon Wild, Aug 25 2003

Keywords

Comments

There is no obligation to cross the lower road (cf. A077054).

Crossrefs

Programs

Formula

a(n) = A077054(n) + A005315(n) for n >= 1. - Andrew Howroyd, Nov 26 2015

Extensions

a(13)-a(20) from Andrew Howroyd, Nov 26 2015

A227167 The number of meandering curves of order n.

Original entry on oeis.org

1, 1, 6, 8, 50, 72, 462, 696, 4536, 7030, 46310, 73188, 485914, 778946, 5202690, 8430992, 56579196, 92470194, 622945970, 1025114180, 6927964218, 11465054942, 77692142980, 129180293184, 877395996200, 1464716085664, 9968202968958, 16698145444260, 113837957337750, 191264779292430
Offset: 1

Views

Author

Keywords

Comments

A meandering curve of order n is a continuous curve which does not intersect itself yet intersects a horizontal line n times.
The set of meandering curves of order n is partitioned into the following three classes: curves with no extremities (A005316), curves with only one extremity (A217310), and curves with both extremities covered by their arcs (A217318).

References

  • A. Panayotopoulos and P. Tsikouras, Properties of meanders, JCMCC 46 (2003), 181-190.

Programs

Formula

a(n) = A000136(n) if n is odd and a(n) = (1/2)*A000136(n) if n is even.
a(n) = A217310(n) + A217318(n) + A005316(n). - Andrew Howroyd, Dec 07 2015

A230439 Number of contractible "tight" meanders of width n.

Original entry on oeis.org

1, 2, 6, 14, 34, 68, 150, 296, 586, 1140, 2182, 4130, 7678, 14368, 26068, 48248, 86572, 158146, 281410, 509442, 901014, 1618544, 2852464, 5089580, 8948694, 15884762, 27882762, 49291952, 86435358, 152316976, 266907560, 469232204, 821844316
Offset: 1

Views

Author

Mamuka Jibladze, Nov 04 2013

Keywords

Comments

A tight meander of width n is a special kind of meander defined as follows.
For any pair (S={s_1,...,s_k},T={t_1,...,t_l}) of subsets of {1,...,n-1} (k or l might be 0), the tight meander M(S,T) defined by (S,T) is the following subset of R^2:
assuming S and T ordered so that 0=s_0
semicircles in the upper half-plane with endpoints (s_{i-1}+j,0) and (s_i+1-j,0), for i=1,...,k+1, and j positive integer with s_{i-1}+j
and semicircles in the lower half-plane with endpoints (t_{i-1}+j,0) and (t_i+1-j,0), for i=1,...,l+1, and j positive integer with t_{i-1}+j
The tight meander M(S,T) is called contractible if it is a contractible subspace of R^2, i.e., is either a single point or homeomorphic to an interval.
Then, a(n) is the number of pairs (S,T) as above such that the tight meander M(S,T) is contractible.
From Roger Ford, Jul 05 2023: (Start)
The following is a definition for closed meanders that yield the same sequence as tight meanders. T(n,k) = the number of closed meanders with n top arches and with k exterior arches and k arches of length 1.
e = exterior arch (arch with no covering arch), 1 = arch with length 1, e1 = arch that is exterior with a length of 1:
e exterior length 1
__________ arches arches
/ ____ \
e1 / / \ \ top = 2 top = 2
/\ / / /\1 \ \
/ \ / / / \ \ \
\ \ / / \ \ / / bottom = 2 bottom = 2
\ \/1 / \ \/1 / total = 4 total = 4
\____/ \____/
e e Example T(4,4).
(End)

Examples

			For n=3 the a(3)=6 contractible tight meanders of width 3 correspond to the following pairs of subsets of {1,2}: ({},{1}), ({},{2}), ({1},{}), ({2},{}), ({1},{2}), ({2},{1}).
		

Crossrefs

For various kinds of meandric numbers see A005315, A005316, A060066, A060089, A060206.

Programs

  • Maple
    # program based on the C code by Martin Plechsmid:
    proc()
    local n,a,b,d,r;
    option remember;
      if args[1]=1 then
       1
      elif nargs=1 then
       2*`+`(''procname(args,[i],[j])'$'j'=1..i-1'$'i'=2..args)
      else
       n:=args[1]; a:=args[2]; b:=args[3];
       if b=[] then
        `+`('procname(n,a,[k])'$'k'=1..n)
       elif a[1]=b[1] then
        0
       elif a[1]0 then
         procname(n-b[1],[d-r,op(subsop(1=r,a))],subsop(1=NULL,b))
        else
         procname(n-b[1],subsop(1=d,a),subsop(1=NULL,b))
        fi
       fi
      fi
    end;
  • Mathematica
    (* program based on the C code by Martin Plechsmid: *)
    f[n_,a_,b_]:=Which[
    n==1, 1,
    b=={}, f[n,a,b]=Sum[f[n,a,{i}],{i,n}],
    a=={} || First[a]
    				

A368054 Irregular triangle read by rows: T(n,k) is the number of k-crossing partitions on 2n nodes, where all partition terms alternate in parity, counted up to reflection.

Original entry on oeis.org

1, 1, 3, 0, 1, 14, 0, 8, 10, 2, 2, 81, 0, 59, 162, 70, 66, 82, 22, 19, 6, 7, 0, 2, 538, 0, 454, 1952, 1229, 1208, 2516, 1803, 1181, 1148, 998, 478, 370, 279, 125, 76, 26, 13, 3, 3, 3926, 0, 3658, 21608, 17083, 17811, 48542, 51306, 40081, 51660, 59023, 42327
Offset: 0

Author

John Tyler Rascoe, Dec 09 2023

Keywords

Comments

The 0-crossing partitions counted in A005316 all have terms that alternate in parity. Also, for an even number of nodes the partitions 1432 and 2341 count the same meandric path. This triangle aims to reduce the total number of k-crossing partitions considered from (2*n)! to (n!)^2, see Irwin link.

Examples

			Triangle begins:
       k=0  1   2    3   4   5   6   7   8   9  10  11  12
  n=0:   1;
  n=1:   1;
  n=2:   3, 0,  1;
  n=3:  14, 0,  8,  10,  2,  2;
  n=4:  81, 0, 59, 162, 70, 66, 82, 22, 19,  6,  7,  0,  2;
  ...
Row n = 3 counts the following k-crossing partitions.
T(3,0) = 14:   T(3,2) = 8:    T(3,3) = 10:   T(3,4) = 2:    T(3,5) = 2:
(1,2,3,4,5,6)  (3,4,1,6,5,2)  (1,2,5,6,3,4)  (3,2,5,6,1,4)  (3,6,1,4,5,2)
(1,2,3,6,5,4)  (3,4,5,6,1,2)  (1,4,3,6,5,2)  (3,6,1,2,5,4)  (5,2,3,6,1,4)
(1,2,5,4,3,6)  (3,6,5,4,1,2)  (1,4,5,2,3,6)
(1,4,3,2,5,6)  (5,2,1,6,3,4)  (1,6,3,2,5,4)
(1,4,5,6,3,2)  (5,4,3,6,1,2)  (3,2,5,4,1,6)
(1,6,3,4,5,2)  (5,6,1,2,3,4)  (3,4,1,2,5,6)
(1,6,5,2,3,4)  (5,6,1,4,3,2)  (3,6,5,2,1,4)
(1,6,5,4,3,2)  (5,6,3,2,1,4)  (5,2,1,4,3,6)
(3,2,1,4,5,6)                 (5,4,1,6,3,2)
(3,2,1,6,5,4)                 (5,6,3,4,1,2)
(3,4,5,2,1,6)
(5,2,3,4,1,6)
(5,4,1,2,3,6)
(5,4,3,2,1,6)
		

Crossrefs

Cf. A077054 (column k=0), A001044 (row sums).

Programs

  • Python
    # see linked program

A006663 Number of projective meanders.

Original entry on oeis.org

1, 1, 2, 2, 8, 12, 52, 86, 400, 710, 3404, 6316, 30888, 59204, 293192, 576018, 2877184, 5764430, 28967428, 58970568, 297634344, 614037754, 3109111064
Offset: 0

Keywords

References

  • S. K. Lando and A. K. Zvonkin, "Plane and projective meanders", Séries Formelles et Combinatoire Algébrique. Laboratoire Bordelais de Recherche Informatique, Université Bordeaux I, 1991, pp. 287-303.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Extensions

a(16)-a(22) from Andrew Howroyd, Mar 30 2017

A167512 Number of Simple Alternating Transit (SAT) mazes with exactly two extreme values.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 6, 10, 22, 34, 67, 100, 188
Offset: 0

Author

Kristen M. Hendershot (KHendershot(AT)westliberty.edu), Nov 05 2009

Keywords

Comments

K(N) incorporates Fibonacci numbers to find the solution.

Crossrefs

A287222 Number of 3-time self-crossing partitions on n nodes.

Original entry on oeis.org

0, 0, 0, 0, 2, 16, 164, 944, 4386, 22240, 83066, 398132
Offset: 0

Author

Benedict W. J. Irwin, May 22 2017

Keywords

Comments

The meandric numbers A005316 are the numbers of paths which cross themselves 0 times.
This sequence is the number of paths that must cross themselves exactly 3 times.

Examples

			a(4) = 2, this is from the partitions (2,4,1,3) and (3,4,1,2).
		

Crossrefs

Previous Showing 41-50 of 52 results. Next