cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A293846 Numbers such that k is the altitude of a Heronian triangle with sides m-13, m, m+13.

Original entry on oeis.org

9, 24, 39, 60, 105, 156, 231, 396, 585, 864, 1479, 2184, 3225, 5520, 8151, 12036, 20601, 30420, 44919, 76884, 113529, 167640, 286935, 423696, 625641, 1070856, 1581255, 2334924, 3996489, 5901324, 8714055, 14915100, 22024041, 32521296, 55663911, 82194840
Offset: 0

Views

Author

Sture Sjöstedt, Dec 27 2017

Keywords

Comments

a(n) gives the values of y satifacting 3*x^2 - y^2 = 507; corresponding x values are given by A293817.
a(n)/3 is the radius of the inscribed circle.

Examples

			If the sides are 15, 28, 41 the triangle has the altitude 9 and is a part of the Pythagorean triangle with the sides 9, 40, 41, so 9 is a term.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[ 3(3x^4 +8x^3 +13x^2 +8x +3)/(x^6 -4x^3 +1), {x, 0, 35}], x] (* or *)
    LinearRecurrence[{0, 0, 4, 0, 0, -1}, 3 {3, 8, 13, 20, 35, 52}, 36] (* Robert G. Wilson v, Dec 27 2017 *)
  • PARI
    Vec(3*(3 + 8*x + 13*x^2 + 8*x^3 + 3*x^4) / (1 - 4*x^3 + x^6) + O(x^40)) \\ Colin Barker, Dec 27 2017

Formula

a(n) = 4*a(n-3) - a(n-6), a(1)=9, a(2)=24, a(3)=39, a(4)=60, a(5)=105, a(6)=156.
G.f.: 3*(3 + 8*x + 13*x^2 + 8*x^3 + 3*x^4) / (1 - 4*x^3 + x^6). - Colin Barker, Dec 27 2017

A185331 Riordan array ((1-x+x^2)/(1+x^2), x/(1+x^2)).

Original entry on oeis.org

1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 0, 2, -2, -1, 1, -1, 1, 3, -3, -1, 1, 0, -3, 3, 4, -4, -1, 1, 1, -1, -6, 6, 5, -5, -1, 1, 0, 4, -4, -10, 10, 6, -6, -1, 1, -1, 1, 10, -10, -15, 15, 7, -7, -1, 1, 0, -5, 5, 20, -20, -21, 21, 8, -8, -1, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 08 2012

Keywords

Comments

Triangle T(n,k), read by rows, given by (-1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Examples

			Triangle begins:
   1;
  -1,  1;
   0, -1,   1;
   1, -1,  -1,   1;
   0,  2,  -2,  -1,   1;
  -1,  1,   3,  -3,  -1,   1;
   0, -3,   3,   4,  -4,  -1,   1;
   1, -1,  -6,   6,   5,  -5,  -1,  1;
   0,  4,  -4, -10,  10,   6,  -6, -1,  1;
  -1,  1,  10, -10, -15,  15,   7, -7, -1,  1;
   0, -5,   5,  20, -20, -21,  21,  8, -8, -1,  1;
   1, -1, -15,  15,  35, -35, -28, 28,  9, -9, -1, 1;
		

Crossrefs

Cf. A206474 (unsigned version).

Programs

  • Mathematica
    CoefficientList[Series[CoefficientList[Series[(1 - x + x^2)/(1 - y*x + x^2), {x, 0, 10}], x], {y, 0, 10}], y] // Flatten (* G. C. Greubel, Jun 27 2017 *)

Formula

T(n,k) = T(n-1,k-1) - T(n-2,k), T(0,0) = 1, T(0,1) = -1, T(0,2) = 0.
G.f.: (1-x+x^2)/(1-y*x+x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n*A184334(n), A163805(n), A000007(n), A028310(n), A025169(n-1), A005320(n) (n>0) for x = -1, 0, 1, 2, 3, 4 respectively.
T(n,n) = 1, T(n+1,n) = -1, T(n+2,n) = -n, T(n+3,n) = n+1, T(n+4,n) = n(n+1)/2 = A000217(n).
T(2n,2k) = (-1)^(n-k) * A128908(n,k), T(2n+1,2k+1) = -T(2n+1,2k) = A129818(n,k), T(2n+2,2k+1) = (-1)*A053122(n,k). - Philippe Deléham, Feb 09 2012

A249578 List of triples (r,s,t): the matrix M = [[4,12,9][2,7,6][1,4,4]] is raised to successive powers, then (r,s,t) are the square roots of M[3,1], M[1,1], M[1,3] respectively.

Original entry on oeis.org

0, 1, 0, 1, 2, 3, 4, 7, 12, 15, 26, 45, 56, 97, 168, 209, 362, 627, 780, 1351, 2340, 2911, 5042, 8733, 10864, 18817, 32592, 40545, 70226, 121635, 151316, 262087, 453948, 564719, 978122, 1694157, 2107560, 3650401, 6322680
Offset: 0

Views

Author

Russell Walsmith, Nov 03 2014

Keywords

Comments

M is the 'Fibonacci matrix' F = [[1,2,1][1,1,0][1,0,0]] taken to the third power and flipped on a vertical axis.
Sequence identities:
2a(3n-2) + a(3n-1) = a(3n+1)
2a(3n) + a(3n+1) = a(3n+3)
a(3n-2) + a(3n-1) + a(3n+1) = a(3n+2)
a(3n) + a(3n+1) + a(3n-3) = a(3n+2)
a(3n-1) * a(3n) + a(3n+1) * a(3n-2) = a(6n-2).

Examples

			M^0 = the 3 X 3 identity matrix = [[1,0,0][0,1,0][0,0,1]]. M[3,1] = 0; M[1,1] = 1; M[1,3] = 0. So the first triple is r = a(0) = 0; s = a(1) = 1; t = a(2) = 0.
M^1 = [[4,12,9][2,7,6][1,4,4]], so r = a(3) = 1; s = a(4) = 2; t = a(5) = 3.
		

Crossrefs

a(3n) = the n-th term of A001353.
a(3n+1) = n-th term of A001075.
a(3n+2) = n-th term of A005320.

Programs

  • Magma
    I:=[0,1,0,1,2,3]; [n le 6 select I[n] else 4*Self(n-3)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Nov 04 2014
  • Mathematica
    CoefficientList[Series[x (3 x^4 - 2 x^3 + x^2 + 1) / (x^6 - 4 x^3 + 1), {x, 0, 70}], x] (* Vincenzo Librandi, Nov 04 2014 *)
    LinearRecurrence[{0,0,4,0,0,-1},{0,1,0,1,2,3},40] (* Harvey P. Dale, Jan 17 2017 *)
  • PARI
    concat(0, Vec(x*(3*x^4-2*x^3+x^2+1)/(x^6-4*x^3+1) + O(x^100))) \\ Colin Barker, Nov 04 2014
    

Formula

a(n) = 4*a(n-3)-a(n-6).
G.f.: x*(3*x^4-2*x^3+x^2+1) / (x^6-4*x^3+1). - Colin Barker, Nov 04 2014
Previous Showing 11-13 of 13 results.