cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A366718 Largest prime factor of 12^n - 1.

Original entry on oeis.org

11, 13, 157, 29, 22621, 157, 4943, 233, 80749, 22621, 266981089, 20593, 20369233, 13063, 22621, 260753, 74876782031, 80749, 29043636306420266077, 85403261, 8177824843189, 57154490053, 321218438243, 2227777, 12629757106815551, 20369233, 86769286104133
Offset: 1

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Magma
    [Maximum(PrimeDivisors(12^n-1)): n in [1..40]];
  • Mathematica
    Table[FactorInteger[12^n - 1][[-1, 1]], {n, 40}]

Formula

a(n) = A006530(A024140(n)).

A081318 Integers n such that the reciprocal of the largest prime factor of 10^n-1 is not a repeating decimal fraction with a period of n.

Original entry on oeis.org

6, 18, 22, 30, 32, 38, 42, 46, 54, 66, 74, 78, 82, 90, 94, 96, 110, 118, 132, 138, 146, 154, 162, 174, 186, 194, 198, 206, 210, 218, 228, 231, 240, 242, 254, 258, 260, 264, 266, 268, 274, 282, 284, 286, 298, 300, 306, 310, 318, 322, 334, 338, 344, 348
Offset: 1

Views

Author

Hugo Pfoertner, Mar 18 2003

Keywords

Comments

For all but three of the terms through a(41)=274, the reciprocal of the largest prime factor of 10^a(n)-1 is a decimal fraction with a period of a(n)/2. Of the three exceptions, there are two (a(32)=231 and a(38)=264) where the period is a(n)/3, and one (a(19)=132) where the period is a(n)/4. - Jon E. Schoenfield, Jun 27 2010

Examples

			30 is in the sequence because the factorization of 10^30-1 is 3^3*7*11*13*31*37*41*211*241*271*2161*9091*2906161 and 2906161 occurs already in 10^15-1=3^3*31*37*41*271*2906161 producing a decimal fraction with a period of 15, (1/2906161=0.000000344096559000000344096559000000344...)
		

Crossrefs

Cf. A081317.

Formula

Integers n such that A061075(n) is not equal to A005422(n).

Extensions

More terms from Hans Havermann, May 31 2003
Terms a(31)-a(37) from Jon E. Schoenfield, Jun 19 2010
Terms a(38)-a(41) added, link added, and earlier comment expanded by Jon E. Schoenfield, Jun 27 2010
a(42)-a(54) from Max Alekseyev, Aug 17 2013, Apr 26 2022

A177928 Let n be the number whose square n^2 has the decimal expansion { d(1) d(2) ... d(D) }, and let q be the corresponding number whose decimal expansion is { d(2) d(3) ... d(D) d(1)}. Sequence lists numbers n dividing q.

Original entry on oeis.org

1, 2, 3, 9, 27, 33, 66, 99, 123, 246, 271, 333, 351, 407, 429, 462, 481, 518, 546, 567, 666, 693, 702, 715, 777, 814, 819, 924, 936, 999, 1434, 2151, 2868, 3333, 4521, 4818, 6666, 7227, 7373, 7535, 8631, 9042, 9999, 33333, 53658, 54546, 66666, 80487, 81819
Offset: 1

Views

Author

Michel Lagneau, May 15 2010

Keywords

Comments

A178028 is a subsequence of this sequence.
When n divides q, n divides d(D)*(10^D - 1) because q = 10*n^2 - d(D)*(10^D - 1). If n is prime, n divides (10^D - 1); for example, the prime term 271 divides 10^5 - 1 = 99999 = 271*369.

Examples

			429 is in the sequence because 429^2 = 184041 and 840411/429 = 1959.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 10^6 do: d:=convert(n^2, base, 10):n1:=nops(d):s:=sum('d[i]*10^i','i'=1..n1-1)+d[n1]:if irem(s,n)=0 then printf(`%d, `,n):else fi:od:
  • Mathematica
    Select[Range[100000], Mod[FromDigits[RotateLeft[IntegerDigits[#^2]]], #] == 0 &] (* T. D. Noe, Jul 27 2012 *)
Previous Showing 11-13 of 13 results.