cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A014781 Seidel's triangle, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 3, 8, 6, 3, 8, 14, 17, 17, 56, 48, 34, 17, 56, 104, 138, 155, 155, 608, 552, 448, 310, 155, 608, 1160, 1608, 1918, 2073, 2073, 9440, 8832, 7672, 6064, 4146, 2073, 9440, 18272, 25944, 32008, 36154, 38227
Offset: 1

Views

Author

Keywords

Comments

Named after the German mathematician Philipp Ludwig von Seidel (1821-1896). - Amiram Eldar, Jun 13 2021

Examples

			Triangle begins:
     1;
     1;
     1,    1;
     2,    1;
     2,    3,    3;
     8,    6,    3;
     8,   14,   17,   17;
    56,   48,   34,   17;
    56,  104,  138,  155,  155;
   608,  552,  448,  310,  155;
   608, 1160, 1608, 1918, 2073, 2073;
  9440, 8832, 7672, 6064, 4146, 2073;
  ...
		

Crossrefs

Even terms of first column give A005439. Diagonal gives A001469.

Programs

  • Mathematica
    max = 13; T[1, 1] = 1; T[n_, k_] /; 1 <= k <= (n+1)/2 := T[n, k] = If[EvenQ[n], Sum[T[n-1, i], {i, k, max}], Sum[T[n-1, i], {i, 1, k}]]; T[, ] = 0; Table[T[n, k], {n, 1, max}, {k, 1, (n+1)/2}] // Flatten (* Jean-François Alcover, Nov 18 2016 *)
  • SageMath
    # Algorithm of L. Seidel (1877)
    # n -> Prints first n rows of the triangle
    def A014781_triangle(n) :
        D = []; [D.append(0) for i in (0..n)]; D[1] = 1
        b = True
        for i in(0..n) :
            h = (i-1)//2 + 1
            if b :
                for k in range(h-1,0,-1) : D[k] += D[k+1]
            else :
                for k in range(1,h+1,1) :  D[k] += D[k-1]
            b = not b
            if i>0 : print([D[z] for z in (1..h)])
    A014781_triangle(12) # Peter Luschny, Apr 01 2012

Extensions

More terms from Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 18 2001

A098435 Triangle of Salie numbers T(n,k) for negative n,k, n < k.

Original entry on oeis.org

1, -1, 1, 2, -3, 1, -8, 13, -6, 1, 56, -92, 45, -10, 1, -608, 1000, -493, 115, -15, 1, 9440, -15528, 7662, -1799, 245, -21, 1, -198272, 326144, -160944, 37817, -5180, 462, -28, 1, 5410688, -8900224, 4392080, -1032088, 141465, -12684, 798, -36, 1
Offset: 1

Views

Author

Ralf Stephan, Sep 08 2004

Keywords

Comments

Inverse matrix of A054142. - Paul Barry, Jan 21 2005
Essentially the same as the triangle giving by [0,-1,-1,-4,-4,-9,-9,-16,-16,-25,...] DELTA[1,0,1,0,1,0,1,0,1,0,...] = 1; 0,1; 0,-1,1; 0,2,-3,1; 0,-8,13,-6,1; 0,56,-92,45,-10,1; ... where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 30 2006

Examples

			   1;
  -1,   1;
   2,  -3,   1;
  -8,  13,  -6,   1;
  56, -92,  45, -10,  1;
		

Crossrefs

T(-1, k) = (-1)^k*A005439(k-1). Row sums are zero.

Programs

  • Mathematica
    rows = 9; A054142 = Table[ PadRight[ Table[ Binomial[2*n-k, k], {k, 0, n}], rows], {n, 0, rows-1}]; inv = Inverse[A054142]; Table[ Take[inv[[n]], n], {n, 1, rows}] // Flatten (* Jean-François Alcover, Oct 02 2013, after Paul Barry *)

Formula

See A065547 for formulas.

A297703 The Genocchi triangle read by rows, T(n,k) for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 8, 14, 17, 17, 56, 104, 138, 155, 155, 608, 1160, 1608, 1918, 2073, 2073, 9440, 18272, 25944, 32008, 36154, 38227, 38227, 198272, 387104, 557664, 702280, 814888, 891342, 929569, 929569, 5410688, 10623104, 15448416, 19716064, 23281432, 26031912
Offset: 0

Views

Author

Peter Luschny, Jan 03 2018

Keywords

Examples

			The triangle starts:
0: [     1]
1: [     1,      1]
2: [     2,      3,      3]
3: [     8,     14,     17,     17]
4: [    56,    104,    138,    155,    155]
5: [   608,   1160,   1608,   1918,   2073,   2073]
6: [  9440,  18272,  25944,  32008,  36154,  38227,  38227]
7: [198272, 387104, 557664, 702280, 814888, 891342, 929569, 929569]
		

Crossrefs

Row sums are A005439 with offset 0.
T(n,0) = A005439 with A005439(0) = 1.
T(n,n) = A110501 with offset 0.

Programs

  • Julia
    function A297703Triangle(len::Int)
        A = fill(BigInt(0), len+2); A[2] = 1
        for n in 2:len+1
            for k in n:-1:2 A[k] += A[k+1] end
            for k in 2: 1:n A[k] += A[k-1] end
            println(A[2:n])
        end
    end
    println(A297703Triangle(9))
    
  • Python
    from functools import cache
    @cache
    def T(n):  # returns row n
        if n == 0: return [1]
        row = [0] + T(n - 1) + [0]
        for k in range(n, 0, -1): row[k] += row[k + 1]
        for k in range(2, n + 2): row[k] += row[k - 1]
        return row[1:]
    for n in range(9): print(T(n))  # Peter Luschny, Jun 03 2022

A058942 Triangle of coefficients of Gandhi polynomials.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 8, 22, 20, 6, 56, 184, 224, 120, 24, 608, 2248, 3272, 2352, 840, 120, 9440, 38080, 62768, 54336, 26208, 6720, 720, 198272, 856480, 1550528, 1531344, 896064, 312480, 60480, 5040, 5410688, 24719488, 48207488, 52633344, 35371776
Offset: 1

Views

Author

David W. Wilson, Jan 12 2001

Keywords

Comments

(1+x)^2 divides these polynomials for n > 2. - T. D. Noe, Jan 01 2008

Examples

			Triangle starts:
[1]
[1,      1]
[2,      4,      2]
[8,      22,     20,      6]
[56,     184,    224,     120,     24]
[608,    2248,   3272,    2352,    840,    120]
[9440,   38080,  62768,   54336,   26208,  6720,   720]
[198272, 856480, 1550528, 1531344, 896064, 312480, 60480, 5040]
		

Crossrefs

First column is A005439, as are row sums. See also A036970.
Cf. A084938.

Programs

  • Mathematica
    c[1][x_] = 1; c[n_][x_] :=  c[n][x] = (x+1)*((x+1)*c[n-1][x+1] - x*c[n-1][x]); Table[ CoefficientList[ c[n][x], x], {n, 9}] // Flatten (* Jean-François Alcover, Oct 09 2012 *)
  • Sage
    # uses[delehamdelta from A084938]
    def A058942_triangle(n) :
        A = [((i+1)//2)^2 for i in (1..n)]
        B = [((i+1)//2) for i in (1..n)]
        return delehamdelta(A, B)
    A058942_triangle(10) # Peter Luschny, Nov 09 2019

Formula

C_1(x) = 1; C_n(x) = (x+1)*((x+1)*C_n-1(x+1) - x*C_n-1(x)).
Triangle T(n, k), read by rows; given by [1, 1, 4, 4, 9, 9, 16, 16, 25, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 24 2005

A168488 Hankel transform of Genocchi medians.

Original entry on oeis.org

1, 1, 16, 20736, 6879707136, 1426576071720960000, 383375999244747512217600000000, 247370021455402476126653493805056000000000000
Offset: 0

Views

Author

Paul Barry, Nov 27 2009

Keywords

Comments

Hankel transform of A005439 (when this starts 1,1,2,8,...).

Crossrefs

Cf. A000178.

Programs

  • Mathematica
    Table[Product[k!^4, {k, 0, n}], {n, 0, 10}] (* Vaclav Kotesovec, Nov 23 2023 *)

Formula

a(n)=Product{k=0..n, ((k+1)^4)^(n-k)}.
From Vaclav Kotesovec, Nov 23 2023: (Start)
a(n) = Product_{k=0..n} k!^4.
a(n) ~ (2*Pi)^(2*n + 2) * n^(2*n^2 + 4*n + 5/3) / (A^4 * exp(3*n^2 + 4*n - 1/3)), where A is the Glaisher-Kinkelin constant A074962. (End)

A221971 G.f.: A(x,y) = Sum_{n>=0} n! * x^n*y^n * Product_{k=1..n} (1 + k*x) / (1 + k*x*y + k^2*x^2*y).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 4, 1, 0, 0, 3, 11, 1, 0, 0, 0, 27, 26, 1, 0, 0, 0, 17, 148, 57, 1, 0, 0, 0, 0, 278, 646, 120, 1, 0, 0, 0, 0, 155, 2590, 2481, 247, 1, 0, 0, 0, 0, 0, 4073, 18304, 8805, 502, 1, 0, 0, 0, 0, 0, 2073, 58427, 109699, 29682, 1013, 1, 0, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Feb 01 2013

Keywords

Examples

			Triangle begins:
1;
0, 1;
0, 1, 1;
0, 0, 4, 1;
0, 0, 3, 11, 1;
0, 0, 0, 27, 26, 1;
0, 0, 0, 17, 148, 57, 1;
0, 0, 0, 0, 278, 646, 120, 1;
0, 0, 0, 0, 155, 2590, 2481, 247, 1;
0, 0, 0, 0, 0, 4073, 18304, 8805, 502, 1;
0, 0, 0, 0, 0, 2073, 58427, 109699, 29682, 1013, 1;
0, 0, 0, 0, 0, 0, 80712, 614819, 590254, 96648, 2036, 1;
0, 0, 0, 0, 0, 0, 38227, 1665829, 5340996, 2948040, 307255, 4083, 1; ...
		

Crossrefs

Cf. A208237 (row sums), A110501 (central terms), A005439 (column sums), A136126.

Programs

  • PARI
    {T(n,k)=polcoeff(polcoeff(sum(m=0, n,m!*x^m*y^m*prod(k=1, m, (1+k*x)/(1+k*x*y+k^2*x^2*y +x*O(x^n)))),n,x),k,y)}
    for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))

Formula

Row sums equal A208237.
Central terms equal A110501, the Genocchi numbers of first kind (unsigned).
Columns sums equal A005439, the Genocchi numbers of second kind.

A240485 a(n) = -Zeta(1-n)*n*(2^(n+1) - 4) - Zeta(-n)*(n+1)*(2^(n+2) - 2), for n = 0 the limit is understood.

Original entry on oeis.org

1, 3, 2, -1, -2, 3, 6, -17, -34, 155, 310, -2073, -4146, 38227, 76454, -929569, -1859138, 28820619, 57641238, -1109652905, -2219305810, 51943281731, 103886563462, -2905151042481, -5810302084962, 191329672483963, 382659344967926, -14655626154768697
Offset: 0

Views

Author

Paul Curtz, Apr 06 2014

Keywords

Comments

Let G(m, n) denote the difference table of a(n):
1, 3, 2, -1, -2, 3, 6, -17, -34,...
2, -1, -3, -1, 5, 3, -23, -17,...
-3, -2, 2, 6, -2, -26, 6,...
1, 4, 4, -8, -24, 32,...
3, 0, -12, -16, 56,...
-3, -12, -4, 72,...
-9, 8, 76,...
17, 68,...
51,...
a(n) = G(0, n).
The main diagonal G(n, n) = 1, -1, 2, -8, 56, -608,... is essentially a signed version of A005439.
The first upper diagonal is the main diagonal multiplied by 3. G(n, n+1) = 3*G(n, n).
G(m, n) = G(m, n-1) + G(m+1,n-1).
Inverse binomial transform: after 1, 2, -3, A110501(n+1) is interleaved with 3*A110501(n+1), signed two by two. I. e. b(n) = 1, 2, -3, 1, 3, -3, -9, 17, 51,... . a(n+2) + b(n+2) = -1, 0, 1, 0, -3, 0, 17,... = A226158(n+2).
This is particular to the Genocchi numbers. If the first upper diagonal is proportional to the main diagonal (1, -1, 2, -8,...), the sequence and the inverse binomial transform are simply connected to the Genocchi numbers.

Crossrefs

Programs

  • Maple
    A240485 := proc(n) if n = 0 then 1 elif n = 1 then 3 else
    m := 2*iquo(n-1, 2) + 2; -2^irem(n-1, 2)*m*euler(m-1, 0) fi end:
    seq(A240485(n), n=0..27); # Peter Luschny, Apr 09 2014
  • Mathematica
    a[n_] := Which[n == 0, 1, n == 1, 3, True, m = 2*Quotient[n-1, 2]+2; -2^Mod[n-1, 2]*m*EulerE[m-1, 0]]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Apr 09 2014, after Peter Luschny *)
  • Sage
    def A240485(n):
        if n < 3: return [1,3,2][n]
        m = 2*((n+1)//2)
        b = 2*(1-2^m)*bernoulli(m)
        if is_even(n): b = 2*b
        return (-1)^ceil((n^2+1)/2)*b
    [A240485(n) for n in (0..24)]  # Peter Luschny, Apr 08 2014

Formula

a(2*n+1) = a(2*n+2)/2 for n > 0.
-a(2*n+2)/2 = A226158(2*n+2) = A001469(n+1) = (2*n+2)*E(2*n+1, 0) where E(n, x) are the Euler polynomials.
a(n) = -2*A226158(n) - A226158(n+1).
E.g.f.: (2*exp(x)*(3*x+exp(x)*(2*x+1)+1))/(exp(x)+1)^2. - Peter Luschny, Apr 10 2014

A277627 Square array read by antidiagonals downwards: T(n,k), n>=0, k>=0, in which column 0 is equal to A057427: 0, 1, 1, 1, ..., and for k > 0 column k lists two zeros followed by the partial sums of column k-1.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 1, 4, 1, 0, 0, 0, 0, 0, 0, 3, 5, 1, 0, 0, 0, 0, 0, 0, 0, 6, 6, 1, 0, 0, 0, 0, 0, 0, 0, 1, 10, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 4, 15, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 21, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 20, 28, 10, 1
Offset: 0

Views

Author

Paul Curtz, Oct 24 2016

Keywords

Comments

In other words, for n > 0 the column k lists 2*k+1 zeros together with the partial sums of the positive terms of column k-1. - Omar E. Pol, Oct 25 2016
Comments from the author:
1) ZSPEC =
0, 0, 0, 0, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, 0, 0, 0, ...
1, 2, 0, 0, 0, 0, 0, 0, ...
1, 3, 1, 0, 0, 0, 0, 0, ...
1, 4, 3, 0, 0, 0, 0, 0, ...
1, 5, 6, 1, 0, 0, 0, 0, ...
etc.
The columns are the autosequences of the first kind of the title (column 1: 0, 0, followed by A001477(n); column 2: 0, 0, 0, 0, followed by A000217(n), etc) .
The positive terms are the Pascal triangle written by diagonals (A011973).
First column: A060576(n+1). Or A057427(n), n>-1, thanks to Omar E. Pol.
Row sums: A000045(n), autosequence of the first kind.
Alternated row sums and subtractions: 0, 1, 1, 0, -1, -1, 0 = A128834(n), autosequence of the first kind.
Antidiagonal sums: 0, 1, 1, 1, 2, 3, 4, 6, ... = A078012(n+2).
Application.
Numbers in triangle leading to the Genocchi numbers -A226158(n).
We multiply the columns of ZSPEC by d(n) = 1, -1, 2, -8, 56, -608, ... from A005439.
Hence, with only the first 0,
0,
1,
1,
1, -1,
1, -2,
1, -3, 2,
1, -4, 6,
1, -5, 12, -8,
1, -6, 20, -32,
1, -7, 30, -80, 56,
1, -8, 42, -160, 280,
etc.
The row sums is -A226158(n).
2) Now consider the case of the autosequences of the second kind.
First step.
2, 1, 1, 1, 1, 1, ... = A054977(n)
0, 0, 2, 3, 4, 5, 6, 7, ... = A199969(n) with offset 0
0, 0, 0, 0, 2, 5, 9, 14, 20, 27, ... see A000096
etc.
The positive terms are ASPEC in A191302. By triangle, they are either A029653(n) with A029653(0) = 2 instead of 1 or A029635(n).
Second step. YSPEC =
2, 0, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, ...
1, 2, 0, 0, 0, 0, ...
1, 3, 0, 0, 0, 0, ...
1, 4, 2, 0, 0, 0, ...
1, 5, 5, 0, 0, 0, ...
1, 6, 9, 2, 0, 0, ...
1, 7, 14, 7, 0, 0, ...
etc.
Diagonals by triangle: A029635(n).
This is the companion to ZSPEC.
Row sums: A000032(n), autosequence of the second kind.
Alternated row sums and subtractions: period 6 repeat 2, 1, -1, -2, -1, 1 = A087204(n), autosequence of the second kind.
Application.
Numbers in triangle leading to A230324(n), a companion to -A226158(n).
We multiply the columns of YSPEC by d(n) 1, -1, 2, -8, 56, ... (see above).
Hence, without zeros:
2,
1,
1, -2,
1, -3,
1, -4, 4,
1, -5, 10,
1, -6, 18, -16,
1, -7, 28, -56,
1, -8, 40, -128, 112,
1, -9, 54, -240, 504,
etc.
The row sum is A230324(n).

Crossrefs

Cf. A011973 (without 0's), A007318 (Pascal's triangle).
Cf. A000045 (row sums), A078012 (antidiagonal sums).
Columns: A060576 or A057427 (k=0), A001477 (k=1), A000217 (k=2).

Programs

  • Mathematica
    kMax = 13; col[0] = Join[{0}, Array[1&, kMax]]; col[k_] := col[k] = Join[{0, 0}, col[k-1][[1 ;; -3]] // Accumulate]; T[n_, k_] := col[k][[n+1]]; Table[T[n-k, k], {n, 0, kMax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 15 2016 *)

Extensions

Better definition from Omar E. Pol, Oct 25 2016

A097418 Triangle of coefficients of a certain sequence of polynomials f_n(x) arising in connection with deformations of coordinate rings of type D Kleinian singularities.

Original entry on oeis.org

1, 2, 0, 3, 2, 0, 4, 8, 8, 0, 5, 20, 56, 56, 0, 6, 40, 216, 608, 608, 0, 7, 70, 616, 3352, 9440, 9440, 0, 8, 112, 1456, 12928, 70400, 198272, 198272, 0, 9, 168, 3024, 39696, 352768, 1921152, 5410688, 5410688, 0, 10, 240, 5712, 103872, 1364800, 12129664, 66057856, 186043904, 186043904, 0
Offset: 1

Views

Author

Paul Boddington, Aug 20 2004

Keywords

Comments

f_n(x) has the property that whenever (a,b) is a pair of complex numbers satisfying 2ab = a^2 + 2a + b^2 + 2b, we have f_n(a) + f_n(b) = 2(a^n - b^n)/(a-b) (interpreted as 2na^(n-1) if a=b). Using the pairs (0,0), (0,-2), (-2,-6), (-6,-12), (-12,-20), ...(see A002378), this enables us to successively deduce the values of f_n(0), f_n(-2),... (and this of course determines f_n(x)). There may be no simpler characterization.

Examples

			The array begins
  1
  2 0
  3 2 0
  4 8 8 0
corresponding to the polynomials f_1(x) = 1, f_2(x) = 2x, f_3(x) = 3x^2 + 2x, f_4(x) = 4x^3 + 8x^2 + 8x.
		

Crossrefs

Cf. A002378, A005439 (right diagonal).

Programs

  • PARI
    f(n, a, b) = if (a==b, 2*n*a^(n-1), 2*(a^n - b^n)/(a-b));
    row(n) = if (n==1, return([1])); my(v = vector(n-1, k, f(n, -(k-1)*k, -k*(k+1)))); my(m = matrix(n-1, n-1, i, j, (-j*(j-1))^i + (-(j+1)*j)^i)); concat(Vecrev(v/m), 0); \\ Michel Marcus, Mar 19 2023

Extensions

Typo corrected and extended by Michel Marcus, Mar 19 2023

A193550 O.g.f.: 1/(1 - x/(1 - x/(1 - 9*x/(1 - 9*x/(1 - 25*x/(1 - 25*x/(1 - 49*x/(1 - 49*x/(1-...))))))))), a continued fraction involving the odd squares.

Original entry on oeis.org

1, 1, 2, 13, 206, 5794, 252068, 15663997, 1316280854, 143694972886, 19764465724412, 3343418236081618, 682133942067492236, 165161123584687819684, 46817735849074712020808, 15358634840651231221695517, 5772973821383087169122348774
Offset: 0

Views

Author

Paul D. Hanna, Jul 30 2011

Keywords

Comments

Conjecture: given o.g.f. A(x), then sqrt( (A(x) - 1)/x ) is an integer series.

Examples

			O.g.f.: A(x) = 1 + x + 2*x^2 + 13*x^3 + 206*x^4 + 5794*x^5 + 252068*x^6 +...
Let A(x) = 1 + x*B(x)^2, then B(x) appears to be an integer series:
B(x) = 1 + x + 6*x^2 + 97*x^3 + 2782*x^4 + 122670*x^5 + 7687932*x^6 + 649446621*x^7 + 71136143478*x^8 + 9806113041658*x^9 +...
the coefficients of B(x) are integer for at least the initial 500 terms.
		

Crossrefs

Cf. A005439.

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[(2*Range[nmax + 1] - 2*Floor[Range[nmax + 1]/2] - 1)^2*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
  • PARI
    /* Continued fraction: */
    {a(n)=local(A=1+x, CF); CF=1+x; for(k=0, n, CF=1/(1-(2*((n-k)\2)+1)^2*x*CF+x*O(x^n))); A=CF; polcoeff(A, n)}

Formula

G.f.: 1/Q(0), where Q(k) = 1 -(2*k+1)^2*x/(1 -(2*k+1)^2*x/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Sep 17 2013
G.f.: Q(0), where Q(k) = 1 - x*(2*k+1)^2/( x*(2*k+1)^2 - 1/(1 - x*(2*k+1)^2/( x*(2*k+1)^2 - 1/Q(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Oct 09 2013
a(n) ~ 2^(4*n+2) * n^(2*n-1/2) / (Pi^(2*n+1/2) * exp(2*n)). - Vaclav Kotesovec, Aug 25 2017
Previous Showing 11-20 of 25 results. Next