cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A302182 Number of 3D walks of type abc.

Original entry on oeis.org

1, 1, 5, 12, 62, 200, 1065, 3990, 21714, 89082, 492366, 2147376, 12004740, 54718092, 308559537, 1454116950, 8255788970, 39935276810, 227976044010, 1126178350440, 6457854821340, 32456552441040, 186814834574550, 952569927106980, 5500292590186380, 28391993275117500
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.

Crossrefs

Programs

  • Python
    from math import comb as binomial
    def row(n: int) -> list[int]:
        return sum(binomial(n, k)*binomial(k, k//2)//(k//2+1)*((k+1) %2)*binomial(n-k, (n-k)//2)**2 for k in range(n+1))
    for n in range(26): print(row(n)) # Mélika Tebni, Nov 27 2024

Formula

From Mélika Tebni, Nov 27 2024: (Start)
a(n) = Sum_{k=0..n} binomial(n, k)*A126120(k)*A018224(n-k).
a(2*n+1) = A135394(n) / (2*n+2).
a(2*n) = A302181(n). (End)

Extensions

a(13)-a(25) from Mélika Tebni, Nov 27 2024

A302184 Number of 3D walks of type abe.

Original entry on oeis.org

1, 2, 7, 26, 108, 472, 2159, 10194, 49396, 244328, 1229308, 6273896, 32410096, 169181664, 891181607, 4731912082, 25302648644, 136150941064, 736747902236, 4007011320808, 21893702201648, 120125750018656, 661630546993116, 3656966382542984, 20278320788680912, 112782556853239712
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.

Crossrefs

Programs

  • Maple
    a := n -> 2*add(binomial(n, k)*binomial(k, k/2)*binomial(2*(n-k), n-k)/(k+2), k = 0..n, 2): seq(a(n), n = 0..25);  # Peter Luschny, Nov 30 2024
  • Python
    from math import comb as binomial
    def a(n: int):
        return sum(binomial(n, k)*binomial(k, k//2)//(k//2+1)*((k+1) %2)*binomial(2*(n-k), n-k) for k in range(n+1))
    print([a(n) for n in range(26)]) # Mélika Tebni, Nov 30 2024

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*A126120(k)*A000984(n-k). - Mélika Tebni, Nov 30 2024

Extensions

a(12)-a(25) from Mélika Tebni, Nov 30 2024

A257517 Number of 3-generalized 2-Motzkin paths of length n with no level steps H=(3,0) at even level.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 5, 8, 18, 30, 66, 120, 252, 484, 1005, 1984, 4110, 8278, 17150, 35024, 72748, 150012, 312642, 649424, 1358244, 2837484, 5954980, 12497616, 26313432, 55434248, 117062205, 247412928, 523881238, 1110335334, 2356819254, 5007428384, 10652412108, 22682131308, 48349084054, 103150869360, 220276819836
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-2*x^3-Sqrt[(1-2*x^3)*(1-4*x^2-2*x^3)])/(2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 27 2015 *)

Formula

G.f.: (1-2*x^3-sqrt((1-2*x^3)*(1-4*x^2-2*x^3)))/(2*x^2).
D-finite with recurrence +(n+2)*(n^2-n+3)*a(n) +(n+1)*(n^2+1)*a(n-1) -4*(n-1)*(n^2-n+3)*a(n-2) +2*(-4*n^3+11*n^2-13*n+19)*a(n-3) -2*(2*n-7)*(n^2+1)*a(n-4) +4*(2*n-11)*(n^2-n+3)*a(n-5) +4*(3*n^3-21*n^2+12*n-34)*a(n-6) +4*(n-8)*(n^2+1)*a(n-7)=0. - R. J. Mathar, Jun 07 2016

A302178 The number of 3D walks of semilength n in a quadrant returning to the origin.

Original entry on oeis.org

1, 4, 40, 570, 9898, 195216, 4209084, 96941130, 2349133930, 59272544760, 1545550116240, 41416083787260, 1135679731004700, 31760915181412800, 903492759037272480, 26086451983000501410, 763124703525758894490, 22585374873810849150600, 675419388009799152812400
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Crossrefs

Formula

a(n) = Sum_{i=0..n,j=0..n-i} A000108(i) * A000108(j) * A000984_(n-i-j) * (2n)!/((2i)!*(2j)!*(2n-2i-2j)!). - Nachum Dershowitz, Aug 13 2020

Extensions

a(8)-a(18) from Nachum Dershowitz, Aug 03 2020
Name edited by Nachum Dershowitz, Aug 13 2020

A302179 The number of 3D walks of length n in an octant returning to axis of origin.

Original entry on oeis.org

1, 1, 4, 9, 40, 120, 570, 1995, 9898, 38178, 195216, 805266, 4209084, 18239364, 96941130, 436235085, 2349133930, 10891439130, 59272544760, 281544587610, 1545550116240, 7489973640240, 41416083787260, 204122127237210, 1135679731004700, 5678398655023500, 31760915181412800, 160789633105902300
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Crossrefs

Programs

  • PARI
    C(n) = binomial(2*n, n)/(n+1); \\ A000108
    f(n) = binomial(n, floor(n/2)); \\ A001405
    a(n) = sum(i=0, n, if (!(i%2), sum(j=0, n-i, if (!(j%2), C(i/2)*C(j/2)*f(n-i-j)*n!/(i! * j! * (n-i-j)!))))); \\ Michel Marcus, Aug 07 2020

Formula

a(n) = Sum_{i=0..n, j=0..n-i, i,j even} A126120(i) * A126120(j) * A001405(n-i-j) * n!/(i! * j! * (n-i-j)!). - Nachum Dershowitz, Aug 06 2020
E.g.f.: (BesselI(1, 2*x)/x)^2*(BesselI(0, 2*x) + BesselI(1, 2*x)). - Mélika Tebni, Jan 06 2025

Extensions

a(13)-a(27) from Nachum Dershowitz, Aug 04 2020

A302183 Number of 3D n-step walks of type abd.

Original entry on oeis.org

1, 1, 4, 10, 39, 131, 521, 1989, 8149, 33205, 139870, 592120, 2552155, 11079303, 48639722, 214997228, 957817013, 4292316197, 19349957108, 87663905954, 399038606291, 1823961268751, 8369603968599, 38540835938335, 178056111047329, 825079806039121, 3833960405339446
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.

Crossrefs

Programs

  • Python
    from math import comb as binomial
    def M(n): return sum(binomial(n, 2*k)*binomial(2*k, k)//(k+1) for k in range(n//2+1)) # Motzkin numbers
    def a(n):
        return sum(binomial(n, k)*binomial(k, k//2)*((k+1) %2)*M(n-k) for k in range(n+1))
    print([a(n) for n in range(27)]) # Mélika Tebni, Dec 03 2024

Formula

From Mélika Tebni, Dec 03 2024: (Start)
a(n) = Sum_{k=0..n} binomial(n, k)*A126869(k)*A001006(n-k).
Inverse binomial transform of A302184. (End)

Extensions

a(13)-a(26) from Mélika Tebni, Dec 03 2024

A302185 Number of 3D n-step walks of type acc.

Original entry on oeis.org

1, 2, 7, 24, 98, 400, 1785, 7980, 37674, 178164, 874146, 4294752, 21667932, 109436184, 563910633, 2908233900, 15235550330, 79870553620, 424021948350, 2252356700880, 12088746573540, 64913104882080, 351594254659830, 1905139854213960, 10399223643879420, 56783986550235000
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.

Crossrefs

Programs

  • Maple
    b:= n-> binomial(n, floor(n/2))*binomial(n+1, floor((n+1)/2)):
    C:= n-> binomial(2*n, n)/(n+1):
    a:= n-> add(binomial(n, 2*k)*C(k)*b(n-2*k), k=0..n/2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 06 2024
    # second Maple program:
    a:= proc(n) option remember; `if`(n<4, [1, 2, 7, 24][n+1],
          (8*(14*n^4+85*n^3+190*n^2+188*n+63)*a(n-1)+4*(n-1)*
          (80*n^4+418*n^3+676*n^2+269*n-108)*a(n-2)-96*(n-1)*(n-2)*
          (10*n^2+31*n+27)*a(n-3)-144*(n-1)*(n-2)*(n-3)*(8*n^2+33*n+36)*
           a(n-4))/((n+4)*(n+3)*(n+2)*(8*n^2+17*n+11)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 06 2024
  • Mathematica
    b[n_] := Binomial[n, Floor[n/2]]*Binomial[n+1, Floor[(n+1)/2]];
    c[n_] := Binomial[2*n, n]/(n+1);
    a[n_] := Sum[Binomial[n, 2*k]*c[k]*b[n - 2*k], {k, 0, n/2}];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 28 2025, after Alois P. Heinz *)
  • Python
    from math import comb as binomial
    def C(n): return (binomial(2*n, n)//(n+1)) # Catalan numbers
    def a(n):
        return sum(binomial(n, k)*C((k+1)//2)*C(k//2)*(2*(k//2)+1)*binomial(n-k, (n-k)//2) for k in range(n+1))
    print([a(n) for n in range(26)]) # Mélika Tebni, Dec 06 2024

Formula

From Mélika Tebni, Dec 06 2024: (Start)
E.g.f.: (BesselI(0, 2*x) + BesselI(1, 2*x))^2*BesselI(1, 2*x) / x.
a(n) = Sum_{k=0..n} binomial(n, k)*A005558(k)*A001405(n-k).
a(2*n+1) = 2*A302182(2*n+1) = A135394(n) / (n+1).
For n > 0, a(A000918(n)) is odd. (End)

Extensions

a(13)-a(25) from Mélika Tebni, Dec 06 2024

A302186 Number of 3D walks of type ace.

Original entry on oeis.org

1, 3, 11, 44, 188, 842, 3911, 18692, 91412, 455540, 2306028, 11829424, 61375408, 321583108, 1699500055, 9049714852, 48513809796, 261638920412, 1418673379052, 7730011715760, 42305916178288, 232475082183544, 1282208011668988, 7096065370945168, 39394821683770960, 219341739839760912
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.

Crossrefs

Cf. A000108, A000984, A002212, A002896, A005572, A026375, A064037, A081671, A138547, A145847, A145867 (number of 3D walks of type acd), A150500, A202814.

Programs

  • Python
    from math import comb as binomial
    def C(n): return (binomial(2*n, n)//(n+1)) # Catalan numbers
    def row(n: int) -> list[int]:
         return sum(binomial(n, k)*sum(binomial(k, j)*C((j+1)//2)*C(j//2)*(2*(j//2)+1) for j in range(k+1)) for k in range(n+1))
    for n in range(26): print(row(n)) # Mélika Tebni, Nov 29 2024

Formula

Binomial transform of A145847. - Mélika Tebni, Nov 29 2024

Extensions

a(12)-a(25) from Mélika Tebni, Nov 29 2024

A302187 Number of 3D walks of type bcc.

Original entry on oeis.org

1, 2, 8, 30, 138, 620, 3060, 14910, 76650, 390852, 2063376, 10832052, 58264668, 312123240, 1702423008, 9256786110, 51036229530, 280696824980, 1560925457520, 8663089672380, 48512836025940, 271229902496280, 1527733861191720, 8593482390429300, 48642125421855420, 275014629509319000
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.

Crossrefs

Programs

  • Python
    from math import comb as binomial
    def a(n):
        return sum(binomial(n, k)*binomial(k, k//2)*binomial(n-k, (n-k)//2)**2 for k in range(n+1))
    print([a(n) for n in range(26)]) # Mélika Tebni, Nov 25 2024

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*A001405(k)*A018224(n-k). - Mélika Tebni, Nov 25 2024

Extensions

a(12)-a(25) from Nachum Dershowitz, Aug 03 2020

A302188 Number of 3D walks of type bce.

Original entry on oeis.org

1, 3, 12, 53, 252, 1252, 6416, 33609, 178996, 965660, 5263728, 28936404, 160204336, 892313424, 4995832640, 28096475977, 158638993476, 898844200524, 5108695394096, 29117034808980, 166370716319088, 952789631705104, 5467881256289856, 31438798094242244, 181079794531199440, 1044651995141484912
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.
Binomial transform of A150500 (Number of 3D walks of type bcd). - Mélika Tebni, Nov 28 2024

Crossrefs

Programs

  • Python
    from math import comb as binomial
    def a(n):
        return sum(binomial(n, k)*sum(binomial(k, j)*binomial(j, j//2)**2 for j in range(k+1)) for k in range(n+1))
    print([a(n) for n in range(26)]) # Mélika Tebni, Nov 28 2024

Extensions

a(12)-a(25) from Mélika Tebni, Nov 28 2024
Previous Showing 21-30 of 30 results.